US009292229B2

a2 United States Patent

US 9,292,229 B2
Mar. 22, 2016

(10) Patent No.:
(45) Date of Patent:

Noguchi
(54) INFORMATION PROCESSING SYSTEM, AND
CONTROL METHOD
(71) Applicant: FUJITSU LIMITED, Kawasaki-shi,
Kanagawa (JP)
(72) Inventor: Yasuo Noguchi, Kawasaki (JP)
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 72 days.
(21) Appl. No.: 14/168,276
(22) Filed: Jan. 30, 2014
(65) Prior Publication Data
US 2014/0281220 A1l Sep. 18, 2014
(30) Foreign Application Priority Data
Mar. 18,2013 (JP) ceeeeerevreeinrecreencnee 2013-054936
(51) Imt.ClL
GO6F 3/00 (2006.01)
GO6F 5/00 (2006.01)
GO6F 13/36 (2006.01)
GO6F 3/06 (2006.01)
GO6F 1/32 (2006.01)
GOGF 11/30 (2006.01)
GOGF 12/02 (2006.01)
GOGF 9/50 (2006.01)
(52) US.CL
CPC ............ GO6F 3/0689 (2013.01); GO6F 1/3287
(2013.01); GOGF 3/0619 (2013.01); GOGF
3/0625 (2013.01); GOGF 3/0632 (2013.01);
GO6F 3/0634 (2013.01); GO6F 9/50 (2013.01);
GOGF 11/3006 (2013.01); GOGF 12/02
(2013.01)
(58) Field of Classification Search

CPC GOGF 9/50; GOGF 11/3006; GOGF 12/02;

GOG6F 12/0223; GOGF 12/0871

USPC 710/8, 4, 53, 56, 57,309
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,852,747 A * 12/1998 Bennett ............. GO6F 17/30171
707/E17.007

....... GO6F 12/0828
711/145

6,374,332 B1* 4/2002 Mackenthun

6,605,769 Bl
6,894,214 B2

8/2003 Juszkiewicz
5/2005 Juszkiewicz

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2003-504673
JP 2004-240697

2/2003
8/2004

(Continued)

Primary Examiner — Idriss N Alrobaye
Assistant Examiner — Getente A Yimer
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

A control method for a control device which connects, via a
connecting device, each of a plurality of processors that each
executes processing to at least one of a plurality of memory
devices that each stores data, the control method comprises
controlling the connecting device so that a second memory
device, which is one of the plurality of memory devices, is
connected to the first processor in response to a connect
request issued by a first processor, which is one of the plural-
ity of processors, since a predetermined amount of data has
been written into a first memory device, which is one of the
plurality of memory devices, the control device; and control-
ling the connecting device so that the first memory device is
disconnected from the first processor in response to a discon-
nect request issued by the first processor after starting to write
data into the second memory device.

18 Claims, 55 Drawing Sheets

8YS

INFORMATION PROCESSING
APPARATUS

MEM1

4——-{ crut | $

cPU2 o SW
CPU3 Q

Q MEM2

Hyil

Q MEM3

CNTL



US 9,292,229 B2

Page 2
(56) References Cited 2010/0161845 Al* 6/2010 Vyshetski ............... GOGF 13/28
710/22
U.S. PATENT DOCUMENTS
FOREIGN PATENT DOCUMENTS

2003/0093615 Al* 5/2003 Delong ............. GO6F 12/02 JP 2006-260376 9/2006

711/106 JP 2010-97533 4/2010

2005/0246388 Al  11/2005 Yamatake WO 01/04871 1/2001

2010/0100696 Al 4/2010 Suzuki WO 2005/003951 1/2005

2010/0138574 Al* 6/2010 Watanabe ..........

GO6F 13/4081
710/108

* cited by examiner



U.S. Patent Mar. 22, 2016 Sheet 1 of 55 US 9,292,229 B2

FIG. 1
SYS
INFORMATION PROCESSING
APPARATUS
T L"““"""""""I
- CPU1 | 4 MEMT |
«— CPU2 —0 SW o— MEM2
s CPU3 —o g MEM3
« > CNTL




U.S. Patent Mar. 22, 2016 Sheet 2 of 55 US 9,292,229 B2




U.S. Patent Mar. 22, 2016 Sheet 3 of 55 US 9,292,229 B2

_ FIG. 3C
FIG.3A gy g FIG3B o g ¥




U.S. Patent Mar. 22, 2016 Sheet 4 of 55 US 9,292,229 B2

F Y

A 4
o
=
=
—
-

Y
e)
=
5
-~




U.S. Patent Mar. 22, 2016 Sheet 5 of 55 US 9,292,229 B2

BT |
- 200 HDD3T

HDD32

100 300 20
FIG. 5 sp0 S8 IMOTHERBOARD ! {STORAGE |
0 TN FRROARD: CONNECTING DEVICE DRNEPOGL |
SWITCHING BY |
DEVIGE MB1 | (HDDD)
CPU (ADD2) |
COMMUNIGATION| MP LMD | (o3 |
" — [ B2 | HOD4
MP L | HOD5 )
MB3 | { D06 )
] HDD?
MB4 (Aops)
(FADBg)
NW - :
E— HDD24
MB7 (HDDZ5)
s | (ADDZ6)
CNSL ____________________ E HDD27
(FDB78)
CONTROL NTP HOD29
N DEVICE CHO0E0)
(CHDD31)
{CHDDB32)




U.S. Patent Mar. 22, 2016 Sheet 6 of 55 US 9,292,229 B2

FIG. 6
100 300 400
{ S |
MOTHERBOARD CONNECTING CONTROL
|" POOL DEVICE DEVICE
P(1,1) P1 HDDT
P(1,.2) P2 HDD2
P(1,3) P3 HDD3
VB P(1,4) P4 HDD4
P(1,5) P5 HDD5
P(1,6) P6 HDD6
P(1.7) P7 HDD7
P(1,8) P8 HDDS
P(2,1) P9 HDDY
P(22) P10 HDD10
P(2,3) P11 HDDT1
VB2 P(2,4) P12 HDD1?
P(2,5) P13 HDD13
P(2,6) P14 HDD14
P2,7) P15 HDD15
P(2,8) P16 HDD16
P(3,1) P17 HDD17
MB3 P(3.2) P18 HDD18
PG,3) P19 HDD19
, P20 HDD20
: P21 HDD21
' P22 HDD22
MB7 P(7,7) P23 HDD23
P(7,8) P24 HDD24
P(8,1) P25 HDD25
P(8.2) P26 HDD26
P(8,3) P27 HDD27
VB8 P(8.4) P28 HDD28
P(8.5) P29 HDD29
P(8,6) P30 HDD30
P(8,7) P31 HDD31
P(8.8) P32 HDD32
— CNTP




U.S. Patent Mar. 22, 2016 Sheet 7 of 55 US 9,292,229 B2

FIG. 7
4?0
CONTROL DEVICE
NW
| NWIF CNIF TO CNTP
CPU4
ROM RAM
|
MD4
MBTBL MSTBL CHKTBL
HDDTBL HSTBL FAILTBL 0S4
CNTBL INDTBL ' PGM4
TBL !




U.S. Patent Mar. 22, 2016 Sheet 8 of 55 US 9,292,229 B2

MBTBL HDDTBL
TOENTIFER] MAPNo | [IDENTIFER| HDDPNG FIG. 8 HSTBL CHITEL
P(T,1) ADD1 | P1 CNTBL PIRPOCE (F5E,_AIDDNG [ STAT HDDNo [T |
P(1,2) HDD2 | P2 HDD1 _[NOTUSED| [ HDDT | nu
P(1,3) HDD3 P3 MBPNo | HDDPNo HDDZ2 | NQT USE HDD2 nu
VBRI P(1.4) HDD4 P4 null nu HDD3 |NOT USE] HDD3 nu
P(1.5) HDD5 P5 nult nu HDD4 [NOT USH HDD4 ny
P(1,6) HDD6 P6 nult n HDDS [NOT USH HDD5 nu
rElsan Sle s As
s N M cl M nul
| P e pE e
s B nUUY m mi® nul
P3| [CHoDT | pir | Bl SIATE HDDT0 [NOTUSED| [HDD0 | nu
vy LPGA) HDD12 | P12 M7 T NOTURE HDD11 INOTUSED] ["HOD11 | nu
0| [CDDJ T Pra | [ oMl O I HBD13 INGTUSED] HODIa | oy
f n B N Ukl al nu
p(2.7) | [HDDI5 [ P15 M4 | NOTUSED CAPTURNG | 15014 |NoTUSED| (ROt oo
A R : E AL M2 oo
) ) H " | nu
P32 | [ g INDTBL HODT7 [NOTUSED| [THDDT7 T nu
P(3.3) HDD19 | P19 | [START TIME] END TIME [HDDNo i OTUSED] [H nu
MB3 P(3.4) HDD2 20 nu null nu HDD19 |NQT USED HDD nu
P(3,5) iDD21 | P21 nu nul nu HDD20 [NCTUSED] [CHDDZ0 | nu
P(3,6) iDD22 | P97 nu nul nu HDD21 [NOTUSED] [HDD21 |__nu
P(3.7) HDDZ3 | P73 nu ol U HDDZ2 [NOTUSED| |_HDD22 | nu
P(3.8) HDD24 | P24 nu ol nu HDD23 [NOTUSED| | HDD23 | _nu
B(4,1) 1DD25 | P25 : : : HDD24 [NOTUSED| [ HDD24 | nu
P{,2) HDD26 |_P26 HDD25 |NQTUSED| ["HDD?5 [ nu
Pid.J) —)):227 357 FATLTBL SPARE | -HDD26 [NOTUSED| ["HDD26 | nu
B b RS LA e T i T AnoRESS HORSL 1 SOLURER) | HODer |
P(d,6) HDD30 | P30 nul nu ny HDDZ9 [NOTUSED| [_HDD29 | nu
P(4.7) HDD3 P31 nul il utl sTARTUP [HDD30 INOTUSED| [ HDD30 nu
P@.8) HDD32 T P32 | | hul ny oy HDD31 [NOTUSED| ["HDD31 | nu
i : g : HDD32 INOTUSED] [CHDD3Z 1 nu




US 9,292,229 B2

HDD1, HDD3, HDD5, HDD?,

DEVICE HDD29 HDD30 HDDZ HDD4 HDD6 HDDS

U.S. Patent Mar. 22, 2016 Sheet 9 of 55
FIG. 9
CONTROL CONNECTING
CNSL S%EE%DEV‘[CE MB1  MB2 : )
CONTROL FOR CONNECTING i i E
START CAPTURING HE020 TO B | . | 5
CAPTURE START INSTALL OS AND CP o ] L ! 5
THREAD l : A
FINISH INSTALLING L SR oo ;
START CAPTURE PROCESS iL: |
CONNECT REQUEST E
SWITCHTHREAD 1L fe |
CONTROL FOR CONNECTING !
(CONNECT) HDD1 AND HDD2 TO M1 | N
CONNECT REQUEST e : ]
| STARTWRITING
(5|~ CAPTURE PROCESS
CONNECT REQUEST CONNECT REQUEST
SWITCH THREAD (fﬂ CONTRCL FOR CONNECTING i
: (CONNECT) |11~ HODSAND HDDG TO M o
' START WRITING
DISCONNECT REQUEST FIUSH WRITHG >
SWITCH THREAD |- DISCONNECT REQUEST =
CONTROL FOR DISCONNECTING o ;
(DISCONNECT) | CONTROL FOR DISCONNEC L THREAD '|__| |

B e

e m e oy



U.S. Patent Mar. 22, 2016 Sheet 10 of 55 US 9,292,229 B2

HSTBL INDTBL

MSTBL PURPOSE O Uk | HDDNo STARTTIME|  END TIME HDDNo

nult null nu
nult null nu
nulf nu nu
null nu nu
null nu nu
null nu nu
null nu null

<
>
=

C

fill
NOT USED
NOT USED

c

—i—c —=|=|=|lc el
CRICACACTN|CICAICICIC(CD.CR CIUICIC T CRICAICICAIC(CRIL (LR | CR|C2)]

-+ oolos|e(o|
RGOS

) () [,
Cl
(2]

3O 2 O OO |

IO

Q)

DATA
CAPTURING

0O OO OO0 00 S0
)
N
iy
T T, O[O0 OO O 0 (OO

SPARE

o el o ) e ] ]

iw/Anns{Na | antnn) ) e g ee] nen)ism ) e n ] n e o) e [ o ]

O
Il
<y

STARTUP

NOT USED
NOTUSED |

2 i O e e e S o o e

- -
i)
o
NO|— )




U.S. Patent Mar. 22, 2016 Sheet 11 of 55 US 9,292,229 B2

HSTBL INDTBL

\_J\_Jool

(10NN
)
o

C

DATA
CAPTURING

I

Ic

c
IC{LN|CCAILACD|CNICD|CA ICA|CAICH|CA]

T 3| CT | 0 0 P S e o o e |

(- ) W ) w lw
(O[O (O[R[N —> [
vl - ] ] - —j

- )
]

- -
NN
INO|—=|

)
N
Y

==l

GO CACA(CO|CAIC|CN(CH (IO

SPARE

i) ) (O[O0

ST ST Te e e e s e e e
:

2
x>
)

D

e
=

T
|

| N N | S o ] ] (s ] (] L] e

STARTUP

S
=
=
i)
()
<

0 A A e oo o o S B S E SO S

wlwlwlwlw/w vl
HOO(Cad |G (NI NN N s]
R —| (SSJlS ) TN

NOT USED




U.S. Patent Mar. 22, 2016 Sheet 12 of 55 US 9,292,229 B2

HSTBL INDTBL
STARTTIME| END "'IQMF.

|
-
=
ped
=]

ONTEL MSTEL FRPOSECF U

G
URING
G
NG

LA vslivs]welwe!

2 2

SISO
-
)

L )

A

| - -

DATA
CAPTURING

null null
null null

c c c c
(Cr[Cr2 || CNICH (LG ICICICN|CD]

it | | S OO L L ) (L AR

| ) )|
)
IN&
N

(e e i) [ ww| (wo) (]| o wv] w

SPARE

ICILISISLILRLILLILILLRRLLCCE

C |c
LACHICICHICN[CD;

29 STAR

SIAR
31 NOT USED
DD32 NOT USED

THT

STARTUP

2 e ) o 0 o o e e




U.S. Patent Mar. 22, 2016 Sheet 13 of 55 US 9,292,229 B2

HSTBL INDTBL
MSTBL PURPOSEQFLUSE | HDDNo START TIME

~\(a)]

Tl

o

) e e
- |ojo|m(oo

R
b I

0 o o s
-
I
(93]

==
2
=}
AT
SoE

ic

‘ ..
&R |CRCn|CRICR [F0 0 20| 20 |

DATA
CAPTURING

c
(]

innluniinnlneiesnainn) el neaea]n )i

L o e ) )

(| (e

le

L ) - -
)
|
-y

SPARE

G| T 2| COCAICHICH|Cr AT CHICN|CS

,.,
||l lezics|csle

L ST e e o e o ) e -
:

|
e
THrT

STARTUP

] o et ot 3 o )

NOT USED
NOT USED

LN
U]

Colc
N3] —|




U.S. Patent Mar. 22, 2016 Sheet 14 of 55 US 9,292,229 B2

FIG. 14 HSTBL INDTBL
CNTBL MSTBL PURPORE OF HDD)No STATE STAPgTIME ENDJIME HDDNo
MBNo_[HDDPNo| | MBNo [ STATF HD 9
(1.8) | P29 | [_MB1 | CAPIURIG HDD3 3
P8 | P30 MB2__| CAPTURING _HD 4
I MB3 | NOTUSE HD
MB4_ | NOTUSED D
H : “%
null null HD
null null | HDD
null null HDD
: : DATA %%
CAPTURING |-H
HDD
HDD
HDD
HDD
HDD19
HDD21
HDD?? R
HDD23 RN
HDDZ4
s B B
N i nu nu null
SPARE | "HDD27 | NOTUSED nul nul nul
1DD28 OTUSE : . :
DD30 | STARTED
STARTUP HPD31 | NOT USED
HDD32 | NOTUSED




U.S. Patent Mar. 22, 2016 Sheet 15 of 55 US 9,292,229 B2

FIG. 15 HSTBL INDTBL
CNTBL MSTEL AR ] HDDNG A | DR,
ENo_|HDDPNo BNo , HDD2 RING ' HDD?
P8 | P29 BT | CAPIURING HDD3 L ! HDD3
iER I OSEi IS iR SpC S =
MBA | NOTUSE HDD6 | STANDBY 6 g HDD6
; ; HDD7 | STANDRY 7 7 HDD?
= f HDDB ™| STANDRY 8 g HDD
nu nuH _-3390 gﬁ :z 5 o H DDY
b i HDD11 | SIANDBY 1 7 DD
: : DATA  HBD15 | SEANDaY 3 ST HDBi3
CAPTURNG |54 T 3TANDRY ) 74 HDD14
HDDT5 | STANDBY 5 5 HDDT5
HDD16 | STANDBY 6 & FDOT6
HDDT7 | STANDBY 7 7 HDD17
HDD18 | STANDBY 8 g HDD18
HDD19 | STANDBY 9 g HDD19
HDD20 ANDBY 20 20 HDD20
HDD21 HOBY: 21 g HDD21
HDD2? | B ) HDD22
HDD23 b 23 DD23
HDD24 | I8 24 DD24
BB —NoTUo i i o
H UoL nu nu nu
SPARE - HPRD? OT USED nu nu null
HDD23 OT USED : : ;
0030 SR
STARTUP —3DD31 T NOT USED
HDD32 | NOTUSED




U.S. Patent

Mar. 22, 2016

START

READ SETUP FILE AND STORE
IT INMBTBL AND HDDTBL

FIG. 16

510

INITIALIZE CNTBL, MSTBL, 512
HSTBL, AND INDTBL

'

| START CHECK THREAD

516

HAS COMMAND
BEEN RECEIVED FROM
MB OR CNSL?

NO

YES

518

HAS CONNECT YES

Sheet 16 of 55

8400
g

REQUEST BEEN
RECEIVED?

NO

520

HAS DISCONNECT
REQUEST BEEN
RECEIVED?

YES

Y

US 9,292,229 B2

NO

START SWITCH
THREAD

<5100

524

HAS CAPTURE YES

START REQUEST BEEN
RECEIVED?

'

NO

526

START CAPTURE
START THREAD

58200

HAS SEARCH
REQUEST BEEN
RECEIVED?

YES
5300
START SEARCHTHREAD |

!

NO




U.S. Patent Mar. 22, 2016 Sheet 17 of 55 US 9,292,229 B2

FIG. 17 5200

5204
| SELECT UNUSED VB 4
Y $206
| SELECT UNUSED STARTUP HDD 4
Y 5208
[ CONNECT SELECTED MB AND SELECTED STARTUPHDD |
Y $210
] UPDATE CNTBL, MSTBL, AND HSTBL 4
|
v 5212
| WAIT UNTIL CONNECTION HAS FINISHED 4
5214
HAVE ALL MBs BEEN INITIALIZED? YES
NO 5216
[ SELECTMBWHICHHASNOTBEENINITALZED |
Y 5218
[ INSTALLOS AND CAPTURE PROGRAMINTOFDD |
Y $220
| RESTART MB 4
]
Y 5222
| WAIT UNTIL MBs ARE RESTARTED 3
5224
HAVE ALL MBs STARTED CAPTURE YES
PROCESS?
NO 5226
[ SELECT MB WHICH HAS NOT STARTED CAPTURE PROCESS |
Y S500
| START CAPTURE PROCESS OF MB 3
|

END



US 9,292,229 B2

U.S. Patent Mar. 22, 2016 Sheet 18 of 55
FIG. 18
$100
5102 ’f
HAS CONNECT
REQUEST OR DISCONNECT > CONNEGT REQUEST
REQUEST BEEN
RECEIVED? S104
SET THE NUMBER OF HDDs  |s”
DISCONNECT TO BE CONNECTED TO BEM
REQUEST |
VES HAVE STEPS
5108 THROUGH $122
BEEN REPEATED
M TIMES?
HAVE STEPS VES
$128 THROUGH 134 5108
BEEN REPEATED
M TIMES? IS THERE NO
UNUSED HDD?
NO
5128 _S110
[ SELECTHDD | [ SELECTUNUSEDHDD |
Y 5130 v 5112
[ DISCONNECTHDD | REGISTER SELECTED
[ UPDATE CNTBL AND HSTRL | SELECT STANDBY HDD
S134 HAVING THE EARLIEST
Y END TIME FROM INDTBL
WRITE CURRENT TIME I
INTO END TIME OF INDTBL -
| y S116
[ CONNECT SELECTEDHDD
S118
[ UPDATE CNTBLAND HSTBL }°
WRITE CURRENTTIVE T0 15140
Y 5136 START TIME OF INDTBL
[ QUITSWITCHTHREAD | Y 5122
WRITE ‘CAPTURING' INTO |5
v END TIME lOF INDTRL

( END )




)7

)/

U.S. Patent Mar. 22, 2016 Sheet 19 of 55
FIG. 19
ADDRESS DATA AREA
/_H — — —
HEAD TIME STAMP (START TIME)
A1 HEAD DATA IDENTIFIER
A2 SEPARATOR
TIME STAMP
o ___METADATA
S DATA X
A3 SEPARATOR
TIME STAMP
o __METADATA ]
NN DATA N
M SEPARATOR
VT1
A5 SEPARATOR
TIME STAMP
o _____METADATA |
S DATA 3
VT2
Ab FINAL DATA IDENTIFIER
MARGIN
TAIL

| DATA
AREA

\ DATA
AREA

DATA
AREA

US 9,292,229 B2

>DATA
UNIT

DATA
FUNIT

DATA
PUNIT




U.S. Patent Mar. 22, 2016 Sheet 20 of 55 US 9,292,229 B2

FIG. 20
$500

j

M=THE NUMBER OF HDDs |_S502
TO BE CONNECTED S

period=1
LIST1 =null
LIST2 =null

Y

START CONNECT REQUEST |s5504
THREAD FOR CONNECTING
DATA-CAPTURING HDDs

S506 NO

LIST1=null?

WAIT UNTILHDDs | 5S508
ARE CONNECTED

'

SET CONNECTED HDD |s5910
NUMBERS IN LIST1

®
8512
IS period ODD
NUMBER?
YES  s514 8516
~ ~
NOWHDD = LIST1 NOWHDD =LIST2

ENDHDD=LIST?2 ENDHDD =LIST1
|




U.S. Patent Mar. 22, 2016 Sheet 21 of 55

FIG. 21

® )

Y

5500

READ DATA FROM BUFFER 55918

US 9,292,229 B2

WRITE DATA INTO M HDDs INDICATED
BY NOWHDD IN DISTRIBUTED MANNER

5520

HAS WRITE

YES

ADDRESS OF ENDHDD
EXCEEDED VT2?

WRITE DATA INTO M HDDs INDICATED
BY ENDHDD IN DISTRIBUTED MANNER

5526

5528

HAS WRITE
ADDRESS OF NOWHDD

NO

EXCEEDED VT1?

START CONNECT REQUEST THREAD

5530

FOR CONNECTING DATA-CAPTURING HDD

5632

HAS WRITE
ADDRESS OF ENDHDD

NO

EXCEEDED VT2?

START DISCONNECT REQUEST THREAD

| 5534

FOR DISCONNECTING DATA-CAPTURING HDD




U.S. Patent

~ START

Mar. 22, 2016

Sheet 22 of 55

FIG. 22
$530

ISSUE CONNECT
REQUEST TO CONNECT
M DATA-CAPTURING HDDs

5540

Y

WAIT UNTIL
DATA-CAPTURING
HDDs ARE CONNECTED

58542

!

period = period+1

5544

IS period
ODD NUMBER?

5546

NO

|

STORE NEW HDD
NUMBERS IN LIST1

US 9,292,229 B2

|-5548 STORE NEW HDD

NUMBERS IN LIST2

;8550

END



U.S. Patent Mar. 22, 2016 Sheet 23 of 55 US 9,292,229 B2

FIG. 23
$534

(__START

5560

IS period NO
ODD NUMBER?
|
ISSUE DISCONNECT | 5962 ISSUE DISCONNECT |5 5266
REQUEST TO DISCONNECT REQUEST TO DISCONNECT
HDDs OF LIST? HDDs OF LIST1
y 5564 Y 5568
LIST2=null LIST1 =null

<l
l}

i
(__END )




U.S. Patent Mar. 22, 2016 Sheet 24 of 55 US 9,292,229 B2

FIG. 24
poriod 1 ) 2 L 6 3 , 4 5 R 6
4 LIST1 il ST1=nul LIST1 R
< NOWHDD i, ENDHDD | . NOWHDD i ENDHDD
HDD1, d) T = —
1002 (a) ' -
VT VT2 VT VT2
ENDHDD=null  (c)
< LIST2=null i LIST2 piIST2=null LIST2
NOWHDD i, ENDHDD NOWHDD
HDDS, . () —
HDD6 1 { r
VT Nyt
LIST1 L LISTY =null
. NOWHDD i ENDHDD
Bk —
v/ VT2
LIST? L LIST2=null
. NOWHDD i, ENDHDD
MDA, ) R
HDD14 i

VT1 VT2



U.S. Patent Mar. 22, 2016 Sheet 25 of 55 US 9,292,229 B2

FIG. 25 CONTROL CONNECTING
CNSL CONTROL DEVICE MB3 MB4 DEVCE  HDD3! HDD32 HDD1 HDD2 HDD3 HDD4
| PROCESS CONTROL FOR CONNECTING 5 | | | | | E
INSTALLOSANDSP Ll i : i i | :
SEARCH THREAD- FINISH INSTALLING 'U STARTACCESS | ! i : :
& | CONTROL FOR CONNECTING HOD1 AND HDD2 TOMES_, 5 § P
START SEARCH PROCESS, , oo
SEARCH PROCESS—10)] START SEARCHING HDD! :
. H H
START SEARCHING HOD2
HOD SEARCHTHREAD (1) | |-HOD SEARCH THREAD (2)
FINISH SEARCHING HDD
FINISH SEARCHING HDD?
(e) {d) SEARCHRESULTS T i
SEARCHRESULTS L]
L (f) GONTROL FOR DISCONNECTING HDDT AND HDDZ FROM MB3.
; [ i L




U.S. Patent Mar. 22, 2016 Sheet 26 of 55 US 9,292,229 B2

HSTBL INDTBL

PIRPOSEQOFUSET HDDNo TATE STARTTIMET — END TIME HDDNo
HDD1 STANDBY 25 25’ HDD1
HDD2 STANDBY 26 26" DD2
HDD3 STANDBY 27 27 HDD3
HDDA STANDBY | 28 28 HDD4
HDDS CAPTURING | 9 CAPTURING HDD4
HDD6 CAPTURING | 30 CAPTURING HDD6
HDD7 CAPTURING | 31 CAPTURING HDD?
HDDS CAPTURING 32 CAPTURING HDD8
HDD9 STANDBY t9 t9 HDD9
HDD10 STANDBY 0 Q HDD10
HDD11 STANDBY 1 i HDD11

DATA  HHBIE-— 1Ay ; 5 0015

CAPTURING =BT STANDSY 1 7 HDDT4
HDD15 STANDBY 5 5 HDD15
HDD16 STANDRY 6 [ HDD16
HDD17 STANDBY 7 T H
HDD18 STANDBY 8 g HDD
HDD19 STANDBY 9 9 HDD19
HDD20 STANDBY 20 200 HDD20
HDD21 STANDBY 21 21 HDD21
HDD22 STANDBY 22 22 HDD22
HDD23 STANDBY 3 {23 HDD23
HDD2 ANDB 2 24 HDD24
HDD25 0T USED null null null

opaRe  [-HDD26 0T USED aull null null

HDDZ2/ 0T USED null null null
HDD28 0T USED : : :
HDD29 STARTED

STARTUP “33:? TARTED
HDD32 |




U.S. Patent Mar. 22, 2016 Sheet 27 of 55 US 9,292,229 B2

FIG. 27 HSTBL INDTBL
PO OF e | HDDNo STATE STARTTNE] _ENDTME | HDDNo
CNTBL MSTBL HDD CHIY 55 75 HDD1
MBNo_[HDDPNo| [ MBNo \ HDD? 2 % ADD2
P18 | P29 MBI | CAPTURING HDD3 2 27 i
po.8) | P30 | [ MB2 | CAPIURING i 28 1 HODA
p(38] P31 | [ MB3 [ SEARCHING HDD5 29 CEPTURIG | DD
D) P VB4 SEARCHING 10061 CAPTURNG 2 CAURNC ™ HOOS
) : : HDDS | CAPTURING Vi CAPTURNG | _HDDS
i HDD9 | STANDBY HDI
1 HDD10 | STANDRY 0 0 HDD10
DD STAbaY ) 5 HoD1?
DATA 2 TANDB 2 2 H
HD STANDRY 3 3 HDD13
CAPTURING |~Hi5514 | STANDBY ' HOD14
HDD15 STANDB 5 5 HDO75
HODT6 | STANDBY 6 & HDD16
HDD STANDBY 7 7 HDD17
HODT8 | STANDRY ; g i
HDD19 | STANDBY g 3 HDD19
HOD20_ | STANDBY 7 i3 HDD2
HDD21 | SIANDBY il o HDD21
HDD? STANDBY 5 o7 HDD22
HDD23 | STANDRY 53 93 HDD?3
HDD? ANDD > 7y HDD24
DD% T NoTHe il ol o
H £l nu nu nu
SPARE ' 1iDD77 | NOTUSED nul nul nul
HDD768 | NOTUSE : ,
D00s T ST :
STARTUP 1ipD31 | STARTED
HDD32 | SIARTED




U.S. Patent

FIG. 28

M= THE NUMBER OF MBs
Ts=START TIME OF KEY
Te=END TIME OF KEY
LIST (HDDs TO BE SEARCHED) =nul

Y 5304
[ K= g

Mar. 22, 2016

5302

Sheet 28 of 55 US 9,292,229 B2

5300

5306

HAVE ALL
RECORDS OF INDTBL NO

BEEN SEARCHED?

HAVE M
MBs BEEN SELECTED?

S318
[ SELECTUNUSEDMB P

$308
Y 7
| READ K-TH RECORD OF INDTBL |

5310

Ts> EN([))IJIME (K)
Te < START TIME (K)?

YES

5332
[ ResARTMB__ P

Y 3320 5312
[ SELECTUNUSEDHDD | [ ADDHDDIK) TOLIST |
5322
CONNECT SELECTED S314
MB AND SELECTED HDD [ K=K+ 3
Y 5324 |
UPDATE CNTBL,
MSTBL, AND HSTBL
|
$326
HAVE M MBs YES
BEEN INITIALIZED? !
SELECT MBWHICHHAS P
NOT BEEN INITIALIZED
Y 5330
INSTALL 03 AND SEARCH
PROGRAM
Y



U.S. Patent Mar. 22, 2016 Sheet 29 of 55 US 9,292,229 B2

FIG. 29

C? I;8336 ?00

| N=THE NUMBER OF HDDs WITHIN LIST/M

5338
HAVE SEARCH YES
PROCESSES OF ALL THE SELECTED
MBs STARTED?
S340
[ SELECTUNUSEDMB
Y $342
[ SELECT N HDDs FROM LIST
CONNECT SELECTED |5 >
HDDs 1O SELECTED MB
Y
UPDATE CNTBL, 5346
MSTBL, AND HSTBL
Y
START SEARCH 5600
PROCESS OF SELECTED MB
|
Y 5348
| RSLTLIST =nul 3

5350

HAVE SEARCH
RESULTS OF ALL MBs BEEN
RECEIVED?

YES

5360

/

SEND RSLTLIST1

TO GNSL
HAVE SEARCH
RESULTS OF N HDDs BEEN
RECEIVED?
END

YES 5354

["ADD SEARCH RESULTS TO RSLTLIST |
Y 5356

[ DISCONNECT HDDs FROMMB |
Y 5358

[ UPDATE CNTBL, MSTBL, ANDHSTBL
I




U.S. Patent Mar. 22, 2016 Sheet 30 of 55 US 9,292,229 B2

FIG. 30
$600
START /(
5602
[ "N=THE NUMBER OF HDDs WITHIN LIST/M |

5604

HAVE HDD
SEARCH THREADS
CORRESPONDING TO ALL HDDs
STARTED?

5606
SELECT HDD WHICH HAS
NOT BEEN SELECTED
Y 5700

[START HDD SEARCH THREAD}®
i

Y
8508

i RSLTLIST2=null

5610

HAVE SEARCH
RESULTS BEEN RECEIVED YES
FROM ALL HDD SEARCH S616
THREADS?
SEND RSLTLIST?
TO CONTROL DEVICE

5612

HAVE SEARCH
RESULTS BEEN RECEIVED
FROM ONE OF HDD SEARCH
THREADS?

END

5614

[ ADD SEARCH RESULTS TO RSLTLIST2 |
I




U.S. Patent Mar. 22, 2016 Sheet 31 of 55 US 9,292,229 B2

FIG. 31

WAIT UNTIL HDD IS
CONNECTED

'

Ts=KEY (START TIME) S704
Te=KEY (END TIME) S
RSLTLIST3=null
START=0
END=0

Y

SEARCH FOR START
ADDRESS “START”

Y

SEARCH FOR END
ADDRESS “END”

Y

READ SEARCH DATA AND
STORE IT IN RSLTLIST3

'

SEND RSLTLIST3 TO
SEARCH PROCESS

S700

5702

5710

S740

|S770

5706

END



U.S. Patent Mar. 22, 2016 Sheet 32 of 55 US 9,292,229 B2

CAPTURE (A) (B) (©) (D)
DATA ————

KEY(Ts)---

OLD

A4
NEW

KEY(Te)




U.S. Patent Mar. 22, 2016 Sheet 33 of 55 US 9,292,229 B2

FIG. 33
S710

START }
5871 2

LOWER = HEAD ADDRESS OF HDD
Y ST14
UPPER=TAIL ADDRESS OF HDD
' S800
READ TIME STAMP (LOWER) |15
TMS>Ts? NO
r§718 l r§830
_ DETECT START
START=LOWER (BINARY SEARCH)

il l

END



U.S. Patent Mar. 22, 2016 Sheet 34 of 55 US 9,292,229 B2
FIG. 34
S740
(" START ) }
Y
5742
LOWER =HEAD ADDRESS OF HDD
Y 5744
UPPER =TAIL ADDRESS OF HDD
! $800
READ TIME STAMP (UPPER) S
TMS <Te? NO
YES /—§748 v r_S/860
_ DETECT END
END=UPPER (BINARY SEARCH)

<l

Y

(___END )



U.S. Patent Mar. 22, 2016 Sheet 35 of 55 US 9,292,229 B2

FIG. 35
5830

START
55832

CENTER=(LOWER+UPPER)/2

v 58800
READ TIME STAMP (CENTER)

Y 5848
START =CENTER

$840
v 2
NO UPPER=CENTER
5842
LOWER=GCENTER
5844
UPPER - LOWER NO

<(MAXIMUM DATA SIZE +TIME STAMP SIZE
+SEPARATOR SIZE)?

55846

START =LOWER

kl
-

END



U.S. Patent Mar. 22, 2016 Sheet 36 of 55 US 9,292,229 B2

FIG. 36
5860

START
5862

CENTER=(LOWER +UPPER)/2

Y 5800
READ TIME STAMP (CENTER)

Y
END=CENTER
5870
NO s
UPPER=CENTER
58872
LOWER=CENTER
[
5874
UPPER - LOWER NO

<(MAXIMUM DATA SIZE +TIME STAMP SIZE
+SEPARATOR SIZE)?

5876
START =UPPER

END



U.S. Patent Mar. 22, 2016 Sheet 37 of 55 US 9,292,229 B2

FIG. 37

START

5800

RSIZE=(MAXIMUMDATASIZE  |s5802
+TIME STAMP SIZE +SEPARATOR SIZE)
Y 5804
LOWER =HEAD ADDRESS OF HDD
5806
NO
ADDR —RSIZE < LOWER?
5810
88 l .
READ RSIZE FROM
I
l< 5812
SEARCH READ DATA FOR SEPARATOR
READ TIME STAMP POSITIONED s o014
IMMEDIATELY AFTER SEPARATOR
Y 5816
TMS=TIME STAMP

END



U.S. Patent Mar. 22, 2016 Sheet 38 of 55 US 9,292,229 B2

FIG. 38 CONTROL, CONNECTING HDD1, HDDS,
DEVICE MBm MB4  DEVICE HDDn HDD32HDD2, HDDS,
CONTROL ~ 2 | ! ! g HDD3, HDD7,
PROCESS CONTROL FCR CONNECTING | ; ! HDD4" HDD8
MBm AND HDDn ! ot | !
INSTALLOSANDCHKP _, | ] ; !
FINISH INSTALLING (b) ' - . |
CHECK THREAD | :
al|  contRoL FoR coNNECTING STARTACCESS : :
HDD1 THROUGH HDD4 TO MEm (c) . u ;
START CHECK PROCESS START CHECKING ]
CHECK PROCESS ~ g HDD1 THROUGH HDD4
LIRERS, |
(6) CHECK RESULTS 1 : ! |
CONTROL FOR DISCONNECTING | | i

HDD1 THROUGH HDD4 FROMMBm; _ (f)

>

CONTROL FOR CONNECTING ! Ll §
HDDS THROUGH HDDB TO MEm | (0) . o
STARTCHECKPROCESS , | START CHECKING Fo
CHECK PROCESS | |—HDU THROUGH HOD8 N
ST
CHECK RESULTS «
CONTROL FOR DISCONNECTING |-
HDD5 THROUGH HDDB FROM b ,

n . .

T : :
! : !




U.S. Patent Mar. 22, 2016 Sheet 39 of 55 US 9,292,229 B2

HSTBL INDTBL
VSTBL PRGOS ] FDDNo | STATE STARTTNE] _ENDTHE [ HODNo
VRROR.["_HDRL | SIANY 2% 7 HOD
- " T
MB1 | CAPIURING | H 3 j H
MB2__ | CAPTURING HDD4 STANDS 2 2 HDD4
NG HOD5 | CAPLURING %6 PURING | _HDDS
D06 | CAPTURIG 3 GAPTURING | FIDD6
HOD/ | CAPTURING 31| CAPTURING | HDD?
HDDS T CAFTURING 37| GAPTURING | _F
HDD9 | STAND3Y 19 9 DD
EEEE S S
CHKgBLC DATA T-HBD15 TSIy 5 g ENAE
DDNo [CHECK THE - ’ i
{pDNo [CHECK: CAPTURING [-HDR1S | STADBY 3 g H0D13
HDDZ |—nul HDD15 | STANDBY 5 5 HDD15
HOD3 | ul HDD16 | STANDBY 5 & HDD15
HDD4 null HDD17 STANDBY 7 7 HDD17
SEEE | e
—ul HDD20 | STANDBY 2 0 HDDZ0
HDD21 | STANDBY 91 o7 HDD21 |
HDD22 | STANDBY 2 ; HDD22
HDD23 | STANDBY vk 07 HDD23
FAILTBL D024 | STAND 2 ’ HDD24
TYPE_ | HDDNo | ADDRESS HRDZ | NOLURED L ul oull
nul nu nul SPARE  I"HBD77 | NOTUSED nu nul null
nu nu nulf | HDD?2 SED .
nu nu HUH ADD29 STARTED :
m w = STARTUP 100t SRR




U.S. Patent Mar. 22, 2016 Sheet 40 of 55 US 9,292,229 B2

FIG. 40 HSTBL INDTBL
PURPOSE OFUSE| HDDNo STATE START TIME END TIME HDDNo
CNTBL MSTBL MRROR 120! (OGN 5 o5 HDD1
BNo [HDDPNo| [ _WBNo 3 HDD? 8 26 26 HOD?
P(1,8) | P29 BT | CAPTURNG HDD3 27 2r HDD3
B(2,8) P30 MB2 | CAPTURING HDD4 HECKIN 28 0DD4
P(3,8) P31 MB3 CHECKING HDD5 CAPTURING 29 CAPTURING HDD5
P(1,3) P5 B4 NOT USED HDD6 CAPTURING__ 30 CAPTURING HDD6
P(1,4) . HDD7 CAPTURING _ | 31 CAPTURING HDD7
F(2,3) : HDD8 CAPTURING 32 CAPTURING HDD8
5174) HDD9 STANDRY {9 HDDY
e e
CAPTURING HDD14 STANCRY 1 ; b 1
HDD15 STANDBY 5 ’ HDD15
HDD16 STANDBY 6 ’ HDD16
HDD17 STANDBY 7 7 HDD17
HDD18 STANDBY 8 g HDD18
H 9 STAND 9 g HDD19
HDD20 STANDBY 20 20 HDD?
HDD21 STANDB 21 21 HDD?2
HDD22 S BY 2 22’ HDD22
e
FATLTEL HDD25 0T USED null null nu
TYPE__| HDDNo | ADDRESS spARE  |_HDD26 | NOTUSED nul nul nu
null ny null HDDZ7 OT USH nufl null nu
nuil nu aull HDD28 0T USE :
nuﬂ ny nu” -3329 2 El :
nu nu nu: I .
: : : STARTUP "HPD31 T STARTED
. : . HDD32 NOT USED




U.S. Patent Mar. 22,2016  Sheet 41 of 55
FIG. 41 8400
START ,5
N=NUMBER OF MBs TO BE STARTED | 5402
M=NUMBER OF HDDs TO BE
CHECKED BY EACH MB
Y 5404
| CHKTBL=nul P
-]
5406
NO HAVE M MBs
BEEN SELECTED?
Y 5408
| SELECT UNUSED MB YES
¥ 5410
| SELECT UNUSED STARTUP HDD
Y .S412
CONNECT SELECTED MB AND
SELECTED STARTUP HOD
Y .S414
| UPDATE CNTBL, MSTBL, ANDHSTBL |
|
-l
S416
Sl iy
Y ,.5418 '
SELECT MB WHICH HAS s124
NOT BEEN INITIALIZED [ WAIT UNTIL MBs ARE RESTARTED}”
Y 542
INSTALL OS AND CHECK 5430
PROiRAM = || SELECT HDD TO BE CHECKED [
_
5450
| RESTARTMB | [ smarTcHeckPRocess |

5470

||  RECEIVE CHECK RESULTS |
5426

HAS ERROR
OCCURRED?

”/(8900

COPY PROCESSING
[

US 9,292,229 B2



U.S. Patent Mar. 22, 2016 Sheet 42 of 55

US 9,292,229 B2

FIG. 42
5430

‘

N=NUMBER OF MBs STARTED |¢5432

M=NUMBER OF HDDs TO BE
CHECKED BY EACH MB

| + |/(S434

HDDLIST =null

5436
YES

HAVE (N X M)
HDDS BEEN STORED?

5438 END
SELECT STANDBY HDD |8
WHICH HAS NOT BEEN CHECKED
FOR THE LONGEST TIME

'

ADD SELECTED 55440
HDD TO HDDLIST1

+ |/(S442

UPDATE CHKTBL




U.S. Patent Mar. 22, 2016 Sheet 43 of 55 US 9,292,229 B2
FIG. 43
?50
5452
HAVE CHECK VES
PROCESSES OF N MBs
STARTED?
END
SELECT MB WHICH 5454
HAS NOT STARTED
Y 5456
[ EXTRACT MHDDs FROMLIST P
CONNECT SELECTED __ |s5*%8
HDDs TO SELECTED MB
UPDATE CNTBL, 5460
HSTBL, AND CHKTBL
Y 51000
START CHECK PROCESS
OF SELECTED MB
|




U.S. Patent Mar. 22, 2016 Sheet 44 of 55 US 9,292,229 B2

FIG. 44
5470

(START ) '{

Y S472
RSLTLIST4=null 3

-

5474

HAVE CHECK
RESULTS BEEN RECEIVED
FROM ALL MBs?

YES

S476 END

HAVE CHECK
RESULTS OF M HDDs BEEN
RECEIVED?

ADD CHECK RESULTS _ |s°478
TO ROLTLISTA
Y 5480

[ DISCONNECT HDDs FROMMB |

+ |)/S482

| UPDATE CNTBL AND HSTBL
|




U.S. Patent Mar. 22, 2016 Sheet 45 of 55 US 9,292,229 B2

FIG. 45 51000

f

HDDLIST2=HDD NUMBER  |-51002
TO BE CHECKED

CHKLIST=null

Y 51004
WAIT UNTIL HDDs ARE CONNECTED

51006
NO

HAS FAILURE

OCCURRED IN
HDD?
VES
51008
REGISTER FAILED HDD
NUMBER IN CHKLIST
DELETE FALEDHDD __ |s51010
NUMBER FROM HDDLIST?
31012
IS THERE NO
HDD WHICH HAS NOT BEEN
CHECKED? l 102
VES 51014 | SEND CHKLIST TO
SELECT HDD WHICH HAS }° CONTROL DEVICE
NOT BEEN CHECKED
Y Y
31016
READ BADBLOCK I (__END D)
CHECK RESULTS
51018
IS THERE
ANY BAD BLOCK?
YES
REGISTER BAD BLOCK _}s 51020
AND ADDRESS IN CHKLIST
|




U.S. Patent Mar. 22, 2016 Sheet 46 of 55 US 9,292,229 B2

CONTROL CONNECTING

FIG. 46 DevicE controL MB3 MB4  DEVICE HDD31 HDD32 HDD1 HDDx

1/~ PROCESS | | | | E | |
CONTROL FOR CONNECTING | ; | | !
MBm AND HDDn | . | ; ;
INSTALL OS AND CPYP (a) . s L ; ; |
FINISH INSTALLING (b) = A =
CHECK THREAD ] |
™[] CONTROL FOR CONNECTING Lr] STARETACCESS ! ;
HDD1 AND HDDx TO MBm ) | y ! ; ]

START COPY PROCESS § L i M

COPY PROCESS~ | |-START COPYING FROM HDD1 TO HDDx
o | | f
() COPY COMPLETION | FINISH COPYING FROM HDD1 TO HDDx

RESPONSE 4 .

CONTROL FOR DISCONNECTING T i :
HDD1 AND HDDx FROMMBm__ ¢ (f) i i

T || a

T
i
1
1




U.S. Patent Mar. 22, 2016 Sheet 47 of 55 US 9,292,229 B2

HSTBL INDTBL
PRECF U] HDDNo | STATE STARTTME] _ENDTHE | HDDNo
MRROR BB SANDay 2 5 oo
1 7 o7 0D
HDD5 | CAPTURING g CAPIURING | HDD5
HOD6 | CAPTURING. 50 CAFTURING | _HDD6
HOD7 | CAPTIRIG 31 CAFTURNG | _HDD/
HODS | CAPTURIG 3 CAPTURNG | H
HDDS | STANDBY 9 9 HDDY
HDD10 | STANDBY 0 0 HDD10
HDD11 | STANDBY 1 T HDD11
DATA —1-FBBT5 T STANDSY 2 2 D013
HDDNo [CHECK TVE HDD13 3 3 ’ HDD13
- DL B3 CAPTURING D14 | STANDBY I HD
null nu HDD2 34 HDD15 STANDBY 5 5 HDD15
, D03 3 HDD16 | STANDBY 5 6 HDD15
oo T 1% HDDT7 | STANDBY 7 7 HDD17
nul nul HDDT8 | STANDBY 8 g HDDT8
il ol FDD19 | STANDBY 9 g HDD1S
HDD20 | STANDBY 2 %0 HDD20
sy 0 o7 joo
@ HOD23 | STANDRY 3 % HDD?3
FAILTBL 007 STANDR: v 24 HDD24
TYPE | HODNo | ADDRESS 1006 IO USED nul nul n—
nu nu nul SPARE —HPDo7 OT USED nul null i
nu nu null HDD28 SED . .
nu nu nu“ HDD29 XTE :
nu nu nu HDD30 | STARTED
. - ; STARTUP DD31 STARTED
T8iek R




U.S. Patent Mar. 22, 2016 Sheet 48 of 55 US 9,292,229 B2

HSTBL INDTEL
MSTEL TREECIE] HDDNo STARTTIVE]_ENDTHE | HDDNG
St H 25 07 HDD1
VENe [ S MIRROR HD HDD?
5 W HDL
" MB2_| CAPTURING HD ! 28 :
s U 00 PTG T CiPTRNG 1003
MB4 | COPYING : %0 :
VA LR E HDD7 | CAPTURING 3 CAPTURING | HDD?
- - HDD8 | CAPTURING 37| _CAPIURNG | H
HDDO | STANDEY i9 9 HDDS
B | e
ol [ nul HDDNo [CRECKTIE : : ’ :
T 53 CAPTURING P14 | STANDRY ) T HOD 14
null null HDD15 STANDBY 5 5 HDD15
: , FH 8V HDD15 | STANDEY 5 & HDDT6
ISR SI=Es S
null null H B ' HDD18
I I HODT9 | STANDEY g § o1
o o HOD20 | STANDEY 2 v HDD20
- - HDD21 | STANDEY 21 ik HOD21
E e e e
FAILTBL HDD24 | STAND3 2% o HDD24
D0% | NOLUSLD i o o
K Uot nu My ny
SPARE IR 7 jorE U null nul
IE R '
STARTUP I"HDB3T | SIARIED
HDD32 STARTEI




U.S. Patent Mar. 22, 2016 Sheet 49 of 55 US 9,292,229 B2

FIG 49 INDTBL

CNTBL MSTRL PRGE D E STASTTHE]_ENDTRE [ HDCNo
MBNo [HDDPNo| [ MBNo [ SIAT MIRROR4» H

1.8) 29 1 CAPTURING H :

P(2,8) P30 MB2 CAPTURING - 2 n!

8) 31 HDD5 CAPTURING 29 CAPTURING HDD5
P(1,3) P5 HDD6 CAPTURING | 3 CAPTURING HDDA
P4 P6 HDD7 CAPTURING | 3 CAPTURING HDD?
P(2,3) F7 HDD8 CAPTURING 32 CAPTURING HDD8
2,4) 3 HDD9 STANDBY ¢ {9 HDDY

i BE Al
null null H B ! H
null nu DDNo [CHECK TIME H i H
null | (EEDREEE ] | TURING Rt TS TARDSY ) 7 HDD14
null nu HDD15 STANDBY 5 5 HDD15

; HDD16 | STANDBY 6 5 HDD16

: HDD17 STANDBY 7 7 HDD17

HDD18 STANDBY 8 ! HDD18
H 9 STANDB g HDD19
HDD20 STANDRY 20 20° H
HDD2 STANDBY 21 27 HDD21
HDD22 STANDBY 22 22" HDD22
FAILTBL HDD23 STANDBY 23 23 HDD23
HDD24 STANDBY 2 24 HDD24
TYPE HDDNo | ADDRESS HDD3 AILED null null nu
HDD FAILURE[ HDD3 null SPARE HDD26 QT USED null null nu
nu null null HDD27 OT USED null null nu
nu null null HDD28 El : :
nu nuli nufl HDD29 STARTED :
: STARTUP -HBRSI—+—3ARIED




U.S. Patent Mar. 22, 2016 Sheet 50 of 55 US 9,292,229 B2

INDTBL
MSTBL PURPOEOF IGE [ 1. STA T5TIME = ZEI,ME HD)II))f\%o
VENG TATE MIRROR ¥ 6 26 HDD?
BT | CAPTURING H 27 2/ HDD3
MB2__| CAPTURING H A 128 28 HDDA
MB3 | CHECKING H A 99 CAPTURNG | _HDD5
MBA T COPYING HDD6_ | CAPTURING | CAPTURING | _HDD6
. : HDD7 _|__CAPTURING 31 CAPTURING | _HDD7
HDD8 | CAPTURING XVl CAPTURING | _HDD8
HDDY STANDRY £ g HDDI
HDD10 | STANDRY a T H0D
CHKTBL HDD11 STANDEY 1 T HDD11
No [CHECK TNE H 0B ' H
]l 2 CAPTURING L8R4 T STANDBY 4 z HDD14
i) g7 1DD15 STANDBY 5 3 HDD15
HDD3 35 HDD16 STANDBY 6 3 HDD16
DDA <03 HDD17 STANDBY 7 7 HDD17
null null HDD 0 STANDBY _’ HDD18
null null HDD19 S__A JEY :’ HDD19
, HDD20 STANDBY v 20 HDDZ0
: HDD21 STANDBY 21 27 HDD21
[ﬁ "OD%s SR % T
FAILTBL HDD24 STANDB 24 D4 HDD24
"ODo | NOT S ”“II ol nl
= Ehi= nu nu au
SPARE I pBO7 | NOTUSED null null null
HDD28 CTUSED ;
“DB% |—SHiRteD :
M v l
STARTUP HiDD51 STARTED
HDD32 STARTED




U.S. Patent Mar. 22, 2016 Sheet 51 of 55 US 9,292,229 B2

FIG. 51 HSTBL INDTBL
CNTBL MSTBL PURPOSEOFUSE> H_D)D STARZTSTIME EN JZT[ME H_D)D]l\110
VBNo [HDDPNo| [ MBNo | STATF | (MRRORe HD 2 ; HOD?
P(1.8) P29 MB1 | CAPTURING HDI 27 27 HDD3
" P(28) | P30 | [ MB2 | CAPTURING | HD 28 28 HDD4
P(3.8) P3 MB3 CHECKING HD| 29 CAPTURING HDD5
P(1.3) PS> N ENOTUSER: HD| 30 CAPTURING HDDB
P(1.4) P6 : HD 3 CAPTURING HDDY
P(2,3) P7 : HD 32 CAPTURING HDD8
P(2,4) P8 HDDY f9 19" HDD3
null null HDD 0 1] HDD10
null null CHKTBL HDD 1 1’ HDD11
null null e — DATA HDD 2 2, HDD12
nulf null HDDNo [CHECKTIME] | cAPTURING [-HBD 3 ki HDD13
null null HDD1 33 H 4 4, HDD14
null null HDD2 34 HDD 5 5 HDD15
HDD25 35 H 6 [ HDD16
' HDD4 36 HDD 7 7 HDD17
null null M i HDD
null null H 9 9 HDD19
: . H ’ HDD2!
: : H 2 27 HDD2
H 22 27 HDD22
HDD23 23 23 HDD23
FAILTBL H 24 24 HDD24
HDD25 USED nu null null
IYPE | HDDNo | ADDRESS SPARE  |_HDD26 OTUSED nu null nul
null null null HDD27 OTUSED nu null null
null null null HDD2: TUSED . .
null null null BEDD29 STARTED :
null null null sTaRTUp LH 3 STARTED
T




U.S. Patent Mar. 22, 2016 Sheet 52 of 55
FIG. 52
START
N0 AR AL,
* 58904 '
SELECT UNUSED MB
* YES
5906
SELECT UNUSED STARTUP HDD
* 58908
CONNECT SELECTED MB AND
SELECTED STARTUP HDD
| Y <8910
UPDATE CNTBL, MSTBL, AND HSTBL
[
.

US 9,292,229 B2

5900

5902

5912

0 R
! 5914 J
SELECT MB WHICH HAS NOT BEEN INITIALIZED
Y 5916 5920
2
INSTALL 0S AND COPY PROGRAM TN 1S

Y 5918 ARE RESTARTED
RESTART B 977

YES —ReLTLIST4 =nul?
END NO 924

EXTRACT FAILURE

BAD BLOCK

J ~9960

BLOCK RECOVERY
PROCESS
I

INFORMATION FROM RSLTLIST4

URRED?

HAS HDD
FAILED OR HAS BAD BLOCK
QCC

HDD FAILURE
~9930

5926

| HDD FAILURE PROCESS |




U.S. Patent Mar. 22, 2016 Sheet 53 of 55 US 9,292,229 B2

FIG. 53
5930
START '((
5932
SELECT SPARE HDD 3
UPDATE HSTBLAND SWAP  J5°°04
FAILED HDD AND SPARE HDD
Y 5936
SELECT MIRROR HDD 3
CONNECT MIRROR HDD 5938
AND SPARE HDD TO MB
Y 5940
UPDATE CNTBLAND HSTBL |
! 5990
START COPY PROCESS |
WAIT FOR COPY COMPLETION |5 5942
RESPONSE FROM COPY PROCESS
DISCONNECT MIRRORHDD |74
AND SPARE HDD FROM MB
UPDATE CNTBL MSTBL 5>
HSTBL, INDTBL, AND CHKTBL

Y

(_ _END )



U.S. Patent Mar. 22, 2016 Sheet 54 of 55 US 9,292,229 B2

FIG. 54
5960

START
592

SELECT MIRROR HDD

CONNECT MIRROR HDD 55964

AND BAD BLOCK HDD TO MB

* 5966
UPDATE CNTBL AND HSTBL

* 5990
START COPY PROCESS

WAIT FOR COPY COMPLETION 598

RESPONSE FROM COPY PROCESS

DISCONNECT MIRRORHDD |5 5970

AND HDD IN WHICH BAD BLOCK
HAS OCCURRED FROM MB

UPDATE CNTBL, MSTBL, 5972

HSTBL, INDTBL, AND CHKTBL

END



U.S. Patent Mar. 22, 2016 Sheet 55 of 55 US 9,292,229 B2

FIG. 55
5990

START '{
15992

WAIT UNTIL HDDs ARE CONNECTED

'

OBTAIN COPY SOURCE HDD NUMBER, | -S994
COPY DESTINATION HDD NUMBER,

AND COPY RANGE
" <5996
PERFORM COPY OPERATION
SEND COPY COMPLETION 55998

RESPONSE TO CHECK THREAD

END



US 9,292,229 B2

1

INFORMATION PROCESSING SYSTEM, AND
CONTROL METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

This application is based upon and claims the benefit of
priority of the prior Japanese Patent Application No. 2013-
054936, filed on Mar. 18, 2013, the entire contents of which
are incorporated herein by reference.

FIELD

The embodiments discussed herein are related to an infor-
mation processing system, a control device, a storage medium
storing a control program for the control device, and a control
method for the information processing system.

BACKGROUND

A method for constructing a system suitable for the speci-
fications of a client by connecting each of a plurality of
processors to associated memory devices with switches has
been proposed, for example, in Japanese Laid-open Patent
Publication No. 2004-240697. In this type of system, during
aperiod in which programs are not used frequently, a plurality
of programs distributed over a plurality of memory devices
are moved to one memory device, thereby reducing power
consumption. An example of this technique is disclosed in
Japanese Laid-open Patent Publication No. 2010-97533.

The following sound recording apparatus is disclosed in,
for example, Japanese National Publication of International
Patent Application No. 2003-504673. Musical sound gener-
ated in a musical instrument is recorded in a sound recording
apparatus per predetermined unit time, thereby making it
possible to search for musical sound. When the sound record-
ing apparatus is full of digital information, recorded digital
information is overwritten with new digital information.

The following technique has been proposed in, for
example, International Publication Pamphlet No. WO2005/
3951. Redundant data items are stored in different memory
devices, and when an abnormality of a memory device has
been detected, a redundant data item stored in a memory
device is copied into a newly assigned memory device. The
following method has also been proposed in, for example,
Japanese Laid-open Patent Publication No. 2006-260376.
Data is stored in a master disc and a backup disc, and when a
failure of the master disc has been detected, data stored in the
backup disc is copied into an alternative area of the master
disc.

In the above-described system, a plurality of memory
devices are connected to a processor with switches, and the
processor writes data into one of the memory devices con-
nected to the processor via the switches. That is, a memory
device into which data will not be written and a memory
device into which data has already been written are also
connected to the processor via the switches. Accordingly,
when the processor writes data into one memory device, the
performance in writing data may be decreased due to the
interference of other memory devices connected to the pro-
cessor via the switches.

SUMMARY

According to an aspect of the embodiment, a control
method for a control device which connects, via a connecting
device, each of a plurality of processors that each executes

10

20

25

30

40

45

50

55

2

processing to at least one of a plurality of memory devices
that each stores data, the control method comprises control-
ling the connecting device so that a second memory device,
which is one of the plurality of memory devices, is connected
to the first processor in response to a connect request issued
by afirst processor, which is one of the plurality of processors,
since a predetermined amount of data has been written into a
first memory device, which is one of the plurality of memory
devices, the control device; and controlling the connecting
device so that the first memory device is disconnected from
the first processor in response to a disconnect request issued
by the first processor after starting to write data into the
second memory device.

The object and advantages of the invention will be realized
and attained by means of the elements and combinations
particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention,
as claimed.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an embodiment of an information pro-
cessing system, a control device, a control program for the
control device, and a control method for the information
processing system;

FIGS. 2A through 2F illustrate an example of an operation
performed by the information processing system illustrated in
FIG. 1,

FIGS. 3A through 3E illustrate another example of an
operation performed by the information processing system
illustrated in FIG. 1;

FIGS. 4A through 4C illustrate still another example of an
operation performed by the information processing system
illustrated in FIG. 1;

FIG. 5 illustrates another embodiment of an information
processing system, a control device, a control program for the
control device, and a control method for the information
processing system;

FIG. 6 illustrates an example of a connecting device illus-
trated in FIG. 5;

FIG. 7 illustrates an example of the control device illus-
trated in FIG. 5,

FIG. 8 illustrates examples of tables allocated within a
memory device illustrated in FIG. 7;

FIG. 9 illustrates an example of a sequence of a capturing
operation performed by the information processing system
illustrated in FIG. 5;

FIG. 10 illustrates examples of the states of the tables after
startup HDDs are connected to motherboards by a capture
start thread indicated by (a) of FIG. 9;

FIG. 11 illustrates examples of the states of the tables after
a capture process indicated by (b) of FIG. 9 has started to
write data into HDD1 through HDD4;

FIG. 12 illustrates examples of the states of the tables after
the capture process has started to write data into HDDS
through HDDS8 at the same time as writing data into HDD1
through HDD4 in response to a connect request thread indi-
cated by (e) of FIG. 9;

FIG. 13 illustrates examples of the states of the tables after
HDD1 and HDD2 are disconnected from a motherboard MB1
and HDD3 and HDD4 are disconnected from a motherboard
MB2 by a disconnect request thread indicated by (g)
of F1IG. 9;



US 9,292,229 B2

3

FIG. 14 illustrates examples of the states of the tables when
items of data have been stored in all HDDs used for data
capturing;

FIG. 15 illustrates examples of the states of the tables when
old data stored in HDDs is overwritten;

FIG. 16 illustrates an example of a control process illus-
trated in FIG. 9;

FIG. 17 illustrates an example of a capture start thread
started in step S200 in FIG. 16;

FIG. 18 illustrates an example of a switch thread started in
step S100 illustrated in FIG. 16;

FIG. 19 illustrates an example of the allocation of storage
areas of each of HDD1 through HDD24 used for data captur-
ing illustrated in FIG. 8;

FIGS. 20 and 21 illustrate an example of a capture process
started in step S500 illustrated in FIG. 17,

FIG. 22 illustrates an example of a connect request thread
started in step S530 in FIG. 21;

FIG. 23 illustrates an example of a disconnect request
thread started in step S534 in FIG. 21;

FIG. 24 illustrates an example of a data capturing operation
executed by the capture process illustrated in FIGS. 20
through 23;

FIG. 25 illustrates an example of a sequence of a search
operation performed by the information processing system
illustrated in FIG. 5;

FIG. 26 illustrates examples of the states of the tables after
search HDDs are connected to a motherboard by a search
thread illustrated in FIG. 25;

FIG. 27 illustrates examples of the states of the tables after
a search process illustrated in FIG. 25 has been started;

FIGS. 28 and 29 illustrate an example of a search thread
started in step S300 in FIG. 16;

FIG. 30 illustrates an example of a search process started in
step S600 in FIG. 29;

FIG. 31 illustrates an example of an HDD search thread
started in step S700 in FIG. 30;

FIG. 32 illustrates examples of a start address START and
an end address END determined by the HDD search thread
illustrated in FIG. 31;

FIG. 33 illustrates an example of a start address search
routine started in step S710 of FIG. 31;

FIG. 34 illustrates an example of an end address search
routine started in step S740 of FIG. 31;

FIG. 35 illustrates an example of a start address detect
routine started in step S830 of FIG. 33;

FIG. 36 illustrates an example of an end address detect
routine started in step S860 of FIG. 34;

FIG. 37 illustrates an example of a time stamp read routine
started in step S800 illustrated in FIGS. 33 through 36;

FIG. 38 illustrates an example of a sequence of a checking
operation performed by the information processing system
illustrated in FIG. 5;

FIG. 39 illustrates examples of the states of the tables when
a check process illustrated in FIG. 38 is started;

FIG. 40 illustrates an example of the states of the tables
when the check process illustrated in FIG. 38 is being
executed;

FIG. 41 illustrates an example of a check thread started in
step S400 illustrated in FIG. 16;

FIG. 42 illustrates an example of an HDD select routine
called by step S430 of FIG. 41;

FIG. 43 illustrates an example of a check process start
routine called by step S450 of FIG. 41;

FIG. 44 illustrates an example of a check result receive
routine called by step S470 of FIG. 41;

5

10

15

20

25

30

40

45

50

55

60

65

4

FIG. 45 illustrates an example of a check process start
routine started in step S1000 of FIG. 43;

FIG. 46 illustrates an example of a sequence of a copy
operation executed by the information processing system
illustrated in FIG. 5;

FIG. 47 illustrates an example of the states of the tables
when a copy process illustrated in FIG. 46 is started;

FIG. 48 illustrates an example of the states of the tables
when the copy process illustrated in FIG. 46 is being
executed;

FIG. 49 illustrates an example of the states of the tables
after the copy process illustrated in FIG. 46 has been
executed;

FIG. 50 illustrates another example of the states of the
tables when the copy process illustrated in FIG. 46 is being
executed;

FIG. 51 illustrates another example of the states of the
tables after the copy process illustrated in FIG. 46 has been
executed;

FIG. 52 illustrates an example of a copy process routine
called by step S900 of FIG. 41;

FIG. 53 illustrates an example of an HDD {failure process
routine called by step S930 of FIG. 52;

FIG. 54 illustrates an example of a block recovery process
routine called by step S960 of FIG. 52; and

FIG. 55 illustrates an example of a copy process started in
step S990 illustrated in FIGS. 53 and 54.

DESCRIPTION OF EMBODIMENTS

An embodiment will be discussed below with reference to
the accompanying drawings.

FIG. 1 illustrates an embodiment of an information pro-
cessing system, a control device, a control program for the
control device, and a control method for the information
processing system. An information processing system SYS of
this embodiment includes a plurality of central processing
units (CPUs) (CPU1, CPU2, and CPU3), a plurality of
memory devices MEMs (MEM1, MEM2, and MEM3) for
storing data therein, a switching device SW, and a control
device CNTL. Each CPU is an example of a processor which
executes processing. The memory devices MEMs are, for
example, hard disk drives. The number of CPUs and the
number of memory devices MEMs loaded in the information
processing system SYS are not restricted to three.

Each CPU may be constituted by a multi-core processor
including a plurality of processor cores. Instead of CPUs, the
information processing system SYS may include a computer,
such as a motherboard on which CPUs and a memory device,
such as a dual inline memory module (DIMM) having
dynamic random access memory (DRAM) chips, are
mounted.

Instead of CPUs, the information processing system SYS
may include processors operated by executing a program,
such as digital signal processors (DSPs) or graphics process-
ing units (GPUs), or a computer including such processors.
The memory devices MEMs may be flash storages, such as
solid state drives (SSDs), or a DIMM.

The memory devices MEMs are not server devices includ-
ing CPUs, but storage devices. Accordingly, compared with
the use of server devices as storage servers instead of memory
devices MEMs, the use of the memory devices MEMs makes
it possible to reduce the cost and the power consumption of
the information processing system SYS.

The switching device SW connects each of the CPU1
through CPU3 to at least one of the memory devices MEM1
through MEM3, whereby an information processing appara-



US 9,292,229 B2

5

tus is constructed. For example, FIG. 1 illustrates a state in
which an information processing apparatus is constructed by
the CPU1 and the memory device MEM1. The information
processing apparatus constituted by the CPU1 and the
memory device MEM1 operate as a capture server that cap-
tures data transferred from an external source outside the
information processing system SYS.

The switching device SW may be capable of connecting a
memory device MEM to a CPU without decreasing the band-
width (data transfer rate) of the memory device MEM. In
other words, the performance of a memory device MEM
connected to a CPU with the switching device SW therebe-
tween is comparable to that of a memory device MEM con-
nected to a CPU without the switching device SW therebe-
tween.

The control device CNTL controls the CPU1 through
CPU3 and the switching device SW. The control device
CNTL is, for example, a computer, such as a server, including
a processor, such as a CPU, and a memory device storing
therein a control program executed by the processor. The
control device CNTL controls the CPU1 through CPU3 and
the switching device SW by executing the control program.

The information processing system SYS is connected to,
for example, a data center in which voice data is collected
from conversation being carried out on cellular phones, and
captures voice data in real time. Then, upon the occurrence of
a failure in a communication line of cellular phones, a com-
puter disposed in the data center reads voice data obtained at
a date and time upon the occurrence of a failure from the
information processing system SYS and analyzes noise, for
example, contained in the read voice data, thereby determin-
ing the cause of the failure. The information processing sys-
tem SYS may write the same data into a plurality of memory
devices MEMs, and upon the occurrence of an error stored in
a memory device MEM, the information processing system
SYS may correct for the error.

FIGS. 2A through 2F illustrate an example of an operation
performed by the information processing system SY'S illus-
trated in FIG. 1. FIGS. 2A through 2F also illustrate a control
method for the information processing system SYS. The
operation illustrated in FIGS. 2A through 2F is implemented
by executing a capture program CP, which is one of control
programs, by the control device CNTL.

In FIGS. 2A through 2F, an information processing appa-
ratus (capture server) is constructed by the CPU1 and at least
one of the memory devices MEM1 through MEM3 connected
to the CPU1. InFIGS. 2B through 2F, a memory device MEM
indicated in the thick-bordered box means that the memory
device MEM has become almost full of a predetermined
amount of data.

InFIG. 2A, the CPU1 writes captured data into the memory
device MEMI1. After writing a predetermined amount of data
into the memory device MEM1, the CPU1 issues a connect
request to the control device CNTL.

Then, in FIG. 2B, in response to the connect request, the
control device CNTL controls the switching device SW so
that the memory device MEM2 may be connected to the
CPU1. The CPU1 may write data into the memory devices
MEM1 and MEM2 at the same time. After starting to write
data into the memory device MEM2, the CPU1 issues a
disconnect request to the control device CNTL.

In FIG. 2C, in response to the disconnect request, the
control device CNTL controls the switching device SW so
that the memory device MEM1 may be disconnected from the
CPU1. Thereafter, the CPU1 writes captured data into the
memory device MEM2. After writing a predetermined

10

15

20

25

30

35

40

45

50

55

60

65

6

amount of data into the memory device MEM2, the CPU1
issues a connect request to the control device CNTL.

In this manner, the control device CNTL controls the
switching device SW so that the memory device MEM2 into
which data will be written may be connected to the CPU1 and
so that the memory device MEM1 into which data has been
written may be disconnected from the CPU1. Accordingly,
the CPU1 may access the memory device MEM2 without
being influenced by interference of the memory device
MEM1. That is, when the CPU1 writes data into the memory
device MEM2, the interference of the other memory devices
MEM1 and MEM3 into which data will not be written may be
avoided. This enables the CPUs to maintain the performance
in writing data into the memory devices MEMs.

Then, in FIG. 2D, in response to the connect request issued
by the CPU1, the control device CNTL controls the switching
device SW so that the memory device MEM3 may be con-
nected to the CPU1, as in the memory device MEM2 con-
nected to the CPU1 in FIG. 2B. The CPU1 may write captured
data into the memory devices MEM2 and MEM3, and after
starting to write data into the memory device MEM3, the
CPU1 issues a disconnect request to the control device
CNTL.

Then, in FIG. 2E, in response to the disconnect request, the
control device CNTL controls the switching device SW so
that the memory device MEM2 may be disconnected from the
CPU1. Thereafter, the CPU1 writes captured data into the
memory device MEM3. After writing a predetermined
amount of data into the memory device MEM3, the CPU1
issues a connect request to the control device CNTL.

Then, in FIG. 2F, since there is no unused memory device
MEM into which data has not been written, the control device
CNTL controls the switching device SW in response to the
connect request so that a memory device MEM storing older
data than data stored in the other memory devices MEMs may
be connected to the CPU1. In this example, the control device
CNTL controls the switching device SW so that the memory
device MEM1 storing the oldest data may be connected to the
CPU1. The CPU1 writes captured data into the memory
device MEM3 and also overwrites data stored in the memory
device MEM1 with captured data.

Thereafter, the CPU1 sequentially overwrites older data
stored in the memory devices MEMs with captured data
under the control of the control device CNTL. In this manner,
when there is no unused memory device MEM into which
data has not been written, the CPU1 overwrites old data stored
in a memory device MEM with new data, thereby making it
possible to store captured data by using a limited number of
memory devices MEMs.

The number of memory devices MEMs used for data cap-
turing (hereinafter may also be referred to as “data-capturing
MEMs”) disposed in the information processing system SYS
is determined by a retention period for which data will be
retained in the memory devices MEMs. In this example, the
data retention period has expired in the memory device
MEMI1 illustrated in FIG. 2F, and thus, data stored in the
memory device MEM1 is not an object to be searched for.

FIGS. 3A through 3E illustrate another example of an
operation performed by the information processing system
SYSillustrated in FIG. 1. FIGS. 3A through 3E also illustrate
a control method for the information processing system SY'S.
The operation illustrated in FIGS. 3A through 3E is imple-
mented by executing a search program, which is one of con-
trol programs, by the control device CNTL.

In FIG. 3A, which illustrates a state similar to that in FIG.
2C, the control device CNTL receives a search request from



US 9,292,229 B2

7

an external source (for example, a data center), outside the
information processing system SYS.

In FIG. 3B, in response to the search request, the control
device CNTL controls the switching device SW so that one of
the memory devices MEM1 and MEM?2 storing data may be
connected to the CPU2.

The control device CNTL has, for example, a storage unit
TBL in which time information indicating a date and a time at
which data was generated (that is, a date and a time at which
data was captured) is stored for each memory device into
which data has been written. For example, the control device
CNTL writes a time at which data written into each memory
device MEM for the first time was captured into the storage
unit TBL. The storage unit TBL may be disposed outside the
control device CNTL.

The control device CNTL specifies, on the basis of the time
information stored in the storage unit TBL, a memory device
MEM (in this example, the MEM1) in which data corre-
sponding to time information indicated in a search key
included in a search request is stored, and then controls the
switching device SW so that the specified memory device
MEM may be connected to the CPU2. In FIGS. 3B and 3D,
the broken lines within the switching device SW indicate that
the CPU2 which performs a search operation and a memory
device MEM to be searched are connected to each other.

The CPU2 searches for data stored in the memory device
MEM1 in response to a search request (search key) received
through the control device CNTL, and informs the control
device CNTL of a search result. In this manner, the CPU2 and
the memory device MEM1 operate as a search server for
searching for data in response to a search request.

In FIG. 3C, if the memory device MEM which has been
instructed to be searched by a search request is the memory
device MEM2 which is currently capturing data, the control
device CNTL controls the switching device SW so that the
memory device MEM3 may be connected to the CPU1, as in
a manner similar to FIG. 2D.

Then, as illustrated in FIG. 3D, the control device CNTL
controls the switching device SW so that the memory device
MEM2 may be disconnected from the CPU1. In this case,
even if the amount of data written into the memory device
MEM2 is less than a predetermined amount, it is assumed that
the predetermined amount of data has been written into the
memory device MEM2 (MEM2 indicated in the thick-bor-
dered box in FIG. 3D). Then, the control device CNTL con-
trols the switching device SW so that the memory device
MEM2 disconnected from the CPU1 may be connected to the
CPU2 and so that the CPU2 may perform a search operation.
With this arrangement, a memory device MEM into which
data is written by the CPU1 does not coincide with a memory
device MEM subjected to a search operation performed by
the CPU2, thereby enabling the CPU1 to stably write data into
the memory device MEM without decreasing the bandwidth
of the memory device MEM.

Then, as illustrated in FIG. 3E, when, for example, a search
operation responding to a search request has finished, the
control device CNTL controls the switching device SW so
that the memory device MEM2 may be disconnected from the
CPU2, and the CPU2 and the memory device MEM2 may
complete the operation as a search server.

In this embodiment, a search operation performed in
response to a search request is executed by the CPU2, which
is different from the CPU1 which performs a data capturing
operation. Since the CPU1 operating as a capture server does
not perform a search operation, it is able to concentrate on a
capturing operation. As a result, the CPU1 is able to stably

20

25

40

45

55

8

write data which demands a high throughput, such as voice
data, into the MEM1 through MEM3 regardless of whether or
not there is a search request.

FIGS. 4A through 4C illustrate another example of an
operation performed by the information processing system
SYSillustrated in FIG. 1. FIGS. 4A through 4C also illustrate
a control method for the information processing system SY'S.
The operation illustrated in FIGS. 4A through 4C is imple-
mented by executing a check program, which is one of control
programs, by the control device CNTL.

In this example, the CPU1 redundantly writes captured
data into a plurality of memory devices MEMs. That is, the
information processing system SYS functions as redundant
arrays of independent disks (RAID) RAID1 which performs
data mirroring. Accordingly, three pairs of memory devices
(MEM1 and MEM2) (MEM3 and MEM4) and (MEMS5 and
MEMS6) that redundantly store data therein are illustrated in
FIGS. 4A through 4C. Memory devices MEM7 and MEM8
are spare memory devices which may each replace one of the
memory devices MEM1 through MEMS6 in case of a failure.

FIG. 4A illustrates a state in which the CPU3 checks the
memory device MEM1 of the memory device pair (MEM1
and MEM2) that redundantly stores data therein in the state
illustrated in FIG. 2E. In FIGS. 4A through 4C, the long
dashed dotted lines within the switching device SW indicate
the CPU3 which performs a checking operation and a
memory device MEM to be checked are connected to each
other. The CPU1 redundantly writes data into the memory
device pair (MEMS5 and MEM6) independently of the CPU3
while the CPU3 is checking the memory device MEM1.

The control device CNTL selects a memory device MEM
to be checked from among memory devices MEMs (in this
example, MEM1 through MEM4) which are not subjected to
a capturing operation by the CPU1. After finishing checking
the memory device MEM1, the CPU3 informs the control
device CNTL of a check result. In this manner, the CPU3
serves as a check server which checks data stored in memory
devices MEMs. After receiving a check result concerning the
memory device MEM1 from the CPU3, the controller CNTL
controls the switching device SW so that the memory device
MEMI1 may be disconnected from the CPU3.

In FIG. 4B, if a check result indicates an occurrence of a
failure of the memory device MEMI1, the control device
CNTL controls the switching device SW so that the memory
device MEM2 and the unused memory device MEM7 may be
connected to the CPU3. The control device CNTL then
instructs the CPU3 to copy redundant data stored in the
memory device MEM2 into the memory device MEM7. The
CPU3 then copies the redundant data stored in the memory
device MEM2 into the memory device MEM7.

Then, the control device CNTL changes the allocation of a
memory device MEM to the CPU1 from the failed memory
device MEM1 to the memory device MEM7. After this
change, when writing data into the memory device MEM2,
the CPU1, which serves as a capture server, also writes redun-
dant data into the memory device MEM7 instead of the
memory device MEMI1.

After copying redundant data stored in the memory device
MEM2 into the memory device MEM7, the control device
CNTL controls the switching device SW so that the memory
devices MEM2 and MEM7 may be disconnected from the
CPU3.

In this manner, regardless of a data writing operation per-
formed by the CPU1, the control device CNTL is able to
detect a failure in the memory device MEM1 and to copy
redundant data from the failed memory device MEM1 and the
memory device MEM2, which forms a pair with the memory



US 9,292,229 B2

9

device MEM1, into the memory device MEM7. That is, inde-
pendently of an operation for writing data into a memory
device MEM performed by the CPU1, the control device
CNTL is able to detect and correct an error occurring in
another memory device MEM which stores data therein.

If a check result indicates an error which may be corrected,
the control device CNTL controls the switching device SW so
that the memory devices MEM1 and MEM2 may be con-
nected to the CPU3. The control device CNTL then instructs
the CPUS3 to copy data stored in the memory device MEM2
into the memory device MEM1 in which an error has
occurred. The CPU3 then copies the data stored in the
memory device MEM2 into the memory device MEMI1,
thereby correcting for an error occurred in the memory device
MEMI1. After correcting for an error in the memory device
MEMI1, the control device CNTL controls the switching
device SW so that the memory devices MEM1 and MEM2
may be disconnected from the CPU3.

In this manner, regardless of a data writing operation per-
formed by the CPU1, the control device CNTL is able to
detect an error occurring in the memory device MEM1 and to
copy data stored in the memory device MEM2, which forms
a pair with the memory device MEM1, into the memory
device MEMI1, thereby correcting for an error in the memory
device MEM1. In other words, since the CPU1, which serves
as a capture server, operates independently of the CPU3,
which checks data, it is able to stably write data into memory
devices MEMs.

FIG. 4C illustrates a state after a correctable error occurred
in the memory device MEM1 has been corrected. After
checking the memory device MEM1, the control device
CNTL controls the switching device SW so that the memory
device MEM2 to be subsequently checked may be connected
to the CPU3. Then, the control device CNTL instructs the
CPU3 to check the memory device MEM2. In this manner,
the control device CNTL sequentially switches the memory
devices MEMs to be connected to the CPU3 and causes the
CPU3 to check the memory devices MEMs.

FIG. 4C illustrates an example in which the control device
CNTL receives a search request and causes the CPU2 to
perform a search operation while the CPU1 is performing a
capturing operation and the CPU3 is performing a checking
operation. In this example, the control device CNTL refers to
the storage unit TBL and detects that data to be searched for
is contained in the memory device pair (MEM1 and MEM2).
Then, the control device CNTL causes the CPU2 to perform
a search operation by using the memory device MEM1 of the
memory device pair (MEM1 and MEM2), which is not sub-
jected to a checking operation.

In this manner, even while the memory devices MEMs are
being sequentially checked, the CPU1 operating as a capture
server is able to concentrate on a capturing operation since it
does not perform a checking operation. As a result, even when
a checking operation is performed, the CPU1 is able to stably
write data which demands a high throughput, such as voice
data, into the MEM1 through MEM3, as in the case illustrated
in FIGS. 3A through 3E. Additionally, as illustrated in FIG.
4C, even while a checking operation, a search operation, and
a capturing operation are being performed at the same time,
the CPU1 is able to stably write data into the memory devices
MEMS5 and MEM6.

In the embodiment illustrated in FIGS. 1 through 4C, by
writing captured data into the memory devices MEMs which
are sequentially connected to the CPU1, the interference of
other memory devices MEMs may be avoided, thereby main-
taining the performance in writing data. Even when a captur-
ing operation and at least one of a search operation and a

20

25

30

40

45

50

10

checking operation is performed at the same time, the CPU1
is able to stably write captured data into the memory devices
MEMs without being influenced by a search operation or a
checking operation.

FIG. 5 illustrates another embodiment of an information
processing system, a control device, a control program for the
control device, and a control method for the information
processing system.

The information processing system SYS of this embodi-
ment includes a motherboard pool 100, a storage drive pool
200, a connecting device 300, and a control device 400. The
motherboard pool 100 includes a plurality of motherboards
MBs (MB1, MB2, MB3, MB4, MBS, MB6, MB7, and MBS).
Each motherboard MB includes a CPU and a memory device
MD (main memory device), such as a memory module. In
FIG. 5, CPUs and memory devices MDs are not illustrated,
except for the motherboard MB1, and the configurations of
the motherboards MB2 through MBS are the same as or
similar to the configuration of the motherboard MB1. Instead
of CPUs, the information processing system SYS may
include processors operated by executing a program, such as
DSPs or GPUs.

Multiple CPUs may be mounted on each motherboard MB,
and multiple processor cores may be mounted on each CPU.
The memory device MD is, for example, a DIMM including
DRAM chips. The motherboards MBs are connected to a
network NW. Each of the motherboards MBs is an example of
an information processing apparatus. In this example, the
motherboard pool 100 includes eight motherboards MB1
through MBS, but the number of motherboards MBs is not
restricted to eight.

FIG. 5 illustrates the configuration of a system which
implements a data capturing operation illustrated in FIG. 9.
Input ports of the motherboards MB1 and MB2 are each
connected to a mirror port MP of a switching device 500. The
input ports of the motherboards MB1 and MB2 may be each
connected to a mirror port MP of the switching device 500 via
a switch, which is one type of relay device.

The switching device 500 is disposed in, for example, a
data center, and functions as, for example, a switch which
monitors data transmitted through a communication line and
from which data is captured. Data to be captured is, for
example, voice data obtained from conversation being carried
out on cellular phones. The information processing system
SYS of this embodiment is operated as a capturing device that
captures voice data supplied from the switching device 500 in
real time.

The information processing system SY'S is also operated as
a search device that searches, upon the occurrence of a com-
munication failure in a communication line, for voice data
obtained at a date and a time at which the communication
failure occurred. Then, a computer disposed in the data center
analyzes noise, for example, contained in the searched voice
data, thereby determining the cause of the communication
failure. The information processing system SYS is also oper-
ated as an error correcting device that corrects an error occur-
ring in data stored in the storage drive pool 200.

The storage drive pool 200 includes a plurality of hard disk
drives (HDD1 through HDD32). Each hard disk drive HDD is
an example of a memory device. In this example, the storage
drive pool 200 includes 32 hard disk drives HDD1 through
HDD32, but the number of hard disk drives HDDs is not
restricted to 32. In the following description, the hard disk
drives HDDs are also called HDDs. Instead of HDDs, the
storage drive pool 200 may include flash storages, such as
SDDs, each including a plurality of flash memory chips, and
a DIMM, as memory devices.



US 9,292,229 B2

11

The connecting device 300 is an interconnect device that
connects a motherboard MB to at least one of the HDDs. An
example of the connecting device 300 is illustrated in FIG. 6.
The data transfer rate between a motherboard MB and HDDs
connected to each other via the connecting device 300 is, for
example, 6 gigabits per second (Gbps) per HDD. That is, an
HDD connected to a motherboard MB has access perfor-
mance comparableto a server local disk, and the motherboard
MB and the HDD connected to each other via the connecting
device 300 are operable as an information processing appa-
ratus, such as a server.

A motherboard MB which is not connected to any HDD is
an unused motherboard MB which does not contribute to the
operation of the information processing system SYS. An
HDD which is not connected to any motherboard MB is an
unused HDD which does not contribute to the operation of the
information processing system SYS. The supply of power to
unused motherboards MBs and unused HDDs may be inter-
rupted under the control of the control device 400.

FIG. 5 schematically illustrates a state in which the moth-
erboard MB1 and the HDD1, HDD2, and HDD29 are con-
nected to each other, and the motherboard MB2 and the
HDD3, HDD4, and HDD30 are connected to each other. An
operating system (OS) and a capture program CP for writing
data into HDDs are installed in the HDD29 and HDD30.

The motherboard MB1 writes captured data into the HDD1
and HDD2 by executing the capture program CP, and the
motherboard MB2 writes captured data into the HDD3 and
HDD4 by executing the capture program CP.

The number M of HDDs used for data capturing is deter-
mined by equation (1):

M=MSP/HSP o)

where MSP denotes the maximum speed at which data is
captured and HSP denotes the data transfer rate per HDD.

The number M of HDDs is determined by rounding up the
result of equation (1). The maximum speed MSP is a constant
which depends on a communication protocol used for data
capturing. The data transfer rate per HDD is an actually
measured value or is determined by specifications of the
HDDs. For example, the speed at which the data center cap-
tures data is 10 Gbps, and the data transfer rate per HDD is
100 megabytes per second (MB/s) when data is sequentially
written. In this case, the number of HDDs is 13. If the moth-
erboard MB1 redundantly writes data into two HDDs, twice
as many HDDs as the number M of HDDs determined by
equation (1) are connected to the motherboard MB1.

The control device 400 is connected to the network NW
and a control port CNTP of the connecting device 300. The
control device 400 controls the connecting device 300 via the
control port CNTP so that an HDD may be connected to a
motherboard MB or so that an HDD may be disconnected
from a motherboard MB. The control device 400 also has a
function of interrupting the supply of power to a motherboard
MB which is not connected to any HDD and a function of
interrupting the supply of power to an HDD which is not
connected to any motherboard MB. That is, the supply of
power to motherboards MBs and HDDs which do not func-
tion as an information processing apparatus, such as a server,
is interrupted, and thus, power is not consumed in such MBs
and HDDs.

The network NW is, for example, a local area network
(LAN). In this embodiment, in addition to the motherboards
MB1 through MB8 and the control device 400, a console
CNSL and a storage device BT are connected to the network
NW. The console CNSL is operated by an operator and con-
trols the information processing system SY'S. For example, in

25

40

45

12

response to an instruction input by using the console CNSL,,
the information processing system SYS performs an opera-
tion for writing data into an HDD or an operation for search-
ing for data stored in an HDD.

The storage device BT is, for example, a hard disk drive
HDD, and stores therein an OS and software (application
programs) executed by the CPU of a motherboard MB. The
OS and software are installed in a predetermined HDD in
response to an instruction input by using the console CNSL
and are executable by the CPU of a motherboard MB.

FIG. 6 illustrates an example of the connecting device 300
illustrated in FIG. 5. The connecting device 300 includes
ports P(i, j) connected to the motherboard pool 100 and ports
Pn connected to the storage drive pool 200. In a port P(i, j), 1
is one of integers 1 to 8 and denotes a motherboard MB
number, and j is one of integers 1 to 8 and denotes a port
number of each motherboard MB. That is, each port P(j, j) is
connected to associated one of eight ports of the motherboard
MBi. In a port Pn, n is one of integers 1 to 32 and denotes an
HDD number. In the following description, a port P(i, j) is
also used for indicating a motherboard MB, and a port Pn is
also used for indicating an HDD.

FIG. 7 illustrates an example of the control device 400
illustrated in FIG. 5. The control device 400 includes a net-
work interface NWIF, a CPU4, a connection interface CNIF,
a read only memory (ROM), a random access memory
(RAM), and a memory device MD4 (main memory device).
The CPU4 is connected to the network NW via the network
interface NWIF and is connected to the control port CNTP of
the connecting device 300 via the connection interface CNIF.
Multiple CPU4 may be loaded in the control device 400, and
multiple processor cores may be loaded in the CPU4.

The ROM stores therein, for example, a boot program
executed by the CPU4 when starting the control device 400.
The RAM stores therein, for example, a program executed by
the CPU4 after the control device 400 is started.

The memory device MDA4 is, for example, a DIMM includ-
ing DRAM chips. The configuration of the control device 400
is similar to that of the motherboard MB. Accordingly, one of
the motherboards MBs disposed within the motherboard pool
100 may be used as the control device 400.

The CPU4 of the control device 400 controls eight tables
TBLs (MBTBL, HDDTBL, CNTBL, MSTBL, HSTBL,
INDTBL, CHKTBL, and FAILTBL) allocated to memory
areas of the memory device MD4. On the basis of information
stored in the eight tables TBLs, the CPU4 controls the con-
nection between the motherboards MBs and the HDDs to be
implemented by the switching device 300, performs a search
operation, and manages errors occurring in the HDDs.
Examples of the tables MBTBL, HDDTBL, CNTBL,
MSTBL, HSTBL, INDTBL, CHKTBL, and FAILTBL are
illustrated in FIG. 8.

Ifthe information processing system SYS does not manage
errors occurring in the HDDs, the memory device MD4 does
not have storage areas to which the tables CHKTBL and
FAILTBL are allocated.

In addition to the eight tables TBLs, the memory device
MD4 has an area in which an OS4 and a control program
PGM4 executed by the CPU4 are stored. By executing the
boot program, the CPU4 transfers the OS4 and the control
program PGM4 from the memory device MD4 to the RAM.
Then, the CPU4 executes the OS4 and the control program
PGM4 in the RAM, thereby implementing the functions of
the control device 400.

FIG. 8 illustrates examples of MBTBL, HDDTBL,
CNTBL, MSTBL, HSTBL, INDTBL, CHKTBL, and FAIL-
TBL allocated to the memory areas of the memory device



US 9,292,229 B2

13

MDA illustrated in FIG. 7. In a field “MBPNo” of the tables
MBTBL and CNTBL, the port numbers of the connecting
device 300 connected to the motherboards MB are stored. In
a field “HDDPNo” of the tables HDDTBL and CNTBL, the
port numbers of the connecting device 300 connected to the
HDDs are stored. In a field “MBNo” of the table MSTBL, the
motherboard MB numbers are stored. In a field “HDDNo” of
the tables INDTBL, HSTBL, CHKTBL, and FAILTBL, the
HDD numbers are stored. In the tables, “null” means blank
and indicates that there is no information in an associated
field.

FIG. 8 illustrates a state in which the tables MBTBL and
HDDTBL are set after the control device 400 is started.
Accordingly, the tables CNTBL, MSTBL, and HSTBL are
initial states.

The table MBTBL stores therein connection relations
between the ports of the motherboards MBs and the connect-
ing device 300 illustrated in FIG. 6. The table HDDTBL
stores therein connection relations between the ports of the
HDDs and the connecting device 300 illustrated in FIG. 6.
Information concerning the tables MBTBL and HDDTBL is
determined by the hardware configuration of the information
processing system SYS, and is read from a setup file and
stored in the memory device MD4 when starting the informa-
tion processing system SYS. The setup file may be stored in
the ROM or may be transferred from an external source
outside the control device 400.

The table CNTBL stores therein information concerning
the specifications of connection relations between the moth-
erboards MBs and the HDDs implemented by the connecting
device 300 illustrated in FIG. 6. That is, the connection rela-
tions between the motherboards MBs and the HDDs con-
nected via the connecting device 300 are indicated by the
table CNTBL. The table MSTBL indicates the usage state of
the motherboards MBs. The table INDTBL stores therein, for
each HDD, index information concerning time stamps (start
time and end time) indicating times at which data was cap-
tured. The table INDTBL is an example of a storage unit
which stores therein, for each HDD, time information indi-
cating a time at which data written into the HDD was gener-
ated. The time at which data was generated is a time at which
data was captured, and includes date and time information.

The table HSTBL indicates the usage state of the HDDs. In
this embodiment, as indicated in the table HSTBL, 24 HDDs,
that is, the HDD1 through HDD24, are used for data capturing
(hereinafter such HDDs may also be referred to as “data-
capturing HDDs”), four HDDs, that is, the HDD25 through
HDD28, are used as spare HDDs, and four HDDs, that is, the
HDD29 through HDD32 are used for starting the OS and the
capture program CP (such HDDs may also be referred to as
“startup HDDs”).

The table CHKTBL stores therein information concerning
times at which the HDDs were checked. The table FAILTBL
stores therein information concerning a failed HDD or infor-
mation concerning a memory area of an HDD in which an
error has occurred. In a field “type” of the table FAILTBL,
information indicating the type of failure, that is, whether an
HDD has failed or a correctable error has occurred in an
HDD, is stored. In a field “address” of the table FAILTBL,
information indicating the address of an area in which a
correctable error has occurred is stored.

FIG. 9 illustrates an example of a sequence of a capturing
operation performed by the information processing system
SYS illustrated in FIG. 5. That is, FIG. 9 illustrates an
example of a sequence concerning the information process-
ing system SYS which operates as a capturing device. In the
following description, the operation performed by the control

10

15

20

25

30

35

40

45

50

55

60

65

14

device 400 includes an operation performed by the CPU4 of
the control device 400, and the operation performed by the
motherboards MBs includes an operation performed by the
CPUs of the motherboards MBs.

In this embodiment, as illustrated in FIG. 5, each of the
motherboards MB1 and MB2 is operated as a capturing
device, and stores voice data supplied through the associated
mirror port MP of the switching device 400 in an HDD.
However, for the sake of simple representation, in FIG. 9, the
sequence concerning the motherboard MB2 is omitted, and
operations performed by the HDD30, HDD3, HDD4, HDD7,
and HDD8 connected to the motherboard MB2 are indicated
by broken-line-bordered rectangular boxes. The motherboard
MB1 writes captured data into the HDD1 and HDD2 in a
distributed manner, and the motherboard MB2 writes cap-
tured data into the HDD3 and HDD4 in a distributed manner.

The sequence of a capturing operation performed by the
motherboard MB2 is similar to that of the motherboard MB1.
Concerning the sequence of the capturing operation per-
formed by the motherboard MB2, MB1, HDD29, HDD1,
HDD2, HDDS5, and HDDé illustrated in FIG. 9 may be read as
MB2, HDD30, HDD3, HDD4, HDD7, and HDDS, respec-
tively.

A control process executed by the control device 400 is
started prior to the start of the sequence illustrated in FI1G. 9.
The control process is executed by the control program
PGM4 illustrated in FIG. 7. At the start of the sequence
illustrated in FIG. 9, the connections between all the mother-
boards MBs and all the HDDs are canceled. That is, as illus-
trated in FIG. 8, all the fields of the table CNTBL indicate
“null”, and the usage states of the tables MSTBL and HSTBL
indicate “not used”. A control program which executes a
capture start thread and a switch thread started by the control
process is stored in advance in the memory device MD4 and
the RAM illustrated in FIG. 7.

The control device 400 executes the capture start thread in
response to a capture start instruction input through the con-
sole CNSL ((a) of FIG. 9). For example, the capture start
thread outputs control information for connecting the moth-
erboard MB1 and the HDD29 to the connecting device 300.
The connecting device 300 connects the motherboard MB1
and the HDD29 on the basis of the control information. After
the motherboard MB1 and the HDD29 have been connected
to each other, the capture start thread installs the OS and the
capture program CP into the HDD29 through the use of the
motherboard MB1. In this case, installation may be per-
formed by transferring data from the storage device BT illus-
trated in FIG. 5 to the HDD29 by using a remote installation
method, such as a kickstart installation method.

After installing the OS and the capture program CP in the
HDD29, the motherboard MB1 is restarted. The CPU of the
motherboard MB1 starts the OS and starts to access the
HDD29. The motherboard MB1 sends an installation
completion response indicating that installation has been
completed to the control device 400.

Upon receiving the installation completion response, the
capture start thread outputs an instruction to start a capture
process to the motherboard MBI1. In response to an instruc-
tion to start the capture process, the motherboard MB1 starts
the capture process executed by the capture program CP ((b)
of FIG.9). The capture process starts a connect request thread
and outputs a connect request to connect HDDs which will
store captured data to the control device 400 ((c) of FIG. 9).

In response to the connect request, the control process
starts the switch thread, and outputs control information for
connecting the HDD1 and HDD2 to the motherboard MB1 to
the connecting device 300 ((d) of FIG. 9). In response to the



US 9,292,229 B2

15
control information, the connecting device 300 connects the
HDD1 and HDD2 to the motherboard MB1. After connecting
the HDD1 and HDD2 to the motherboard MB1, the capture
process starts a capturing operation and writes voice data into
the HDD1 and HDD?2 in a distributed manner.

After a predetermined amount of data has been stored in
each of the HDD1 and HDD2, the capture process starts the
connect request thread and outputs a connect request to con-
nect HDDs which will store captured data to the control
device 400 ((e) of FIG. 9).

In response to the connect request, the control process
starts the switch thread and outputs control information for
connecting the motherboard MB1 and the HDD5 and HDD6
to the connecting device 300 ((f) of FIG. 9). In response to the
control information, the connecting device 300 connects the
HDD35 and HDD®6 to the motherboard MB1. After connecting
the HDDS and HDD6 to the motherboard MB1, the capture
process starts a capturing operation and writes voice data into
the HDDS5 and HDDG6 in a distributed manner. That is, the
motherboard MB1 writes voice data written into the HDD1
and HDD?2 also into the HDDS and HDD6.

After starting to write data into the HDD5 and HDD#6, the
capture process finishes writing data into the HDD1 and
HDD2. After finishing writing data into the HDD1 and
HDD2, the capture process starts a disconnect request thread
and outputs a disconnect request to disconnect the HDD1 and
HDD2 from the motherboard MB1 to the control device 400
((g) of FIG. 9).

In response to the disconnect request, the control process
starts the switch thread and outputs control information for
disconnecting the HDD1 and HDD2 from the motherboard
MB1 to the connecting device 300 ((h) of FIG. 9). In response
to the control information, the connecting device 300 discon-
nects the HDD1 and HDD2 from the motherboard MB1.
Thereafter, the capture process writes data into the HDD5 and
HDD6, and after a predetermined amount of data has been
stored in each of the HDDS5 and HDDG6, the capture process
starts the connect request thread and outputs a connect
request to connect unused HDDs which will store captured
data to the control device 400. In response to the connect
request, the control process connects two unused HDDs to the
motherboard MB1, and disconnects the HDD35 and HDD6
from the motherboard MBI in response to a disconnect
request. Thereafter, an operation is similarly performed, and
data is sequentially written into a plurality of pairs of HDDs.

If there is no unused HDD to be connected to the mother-
board MB1 in response to a connect request, the switch thread
controls the connecting device 300 so that an HDD storing
older data than data stored in the other HDDs may be con-
nected to the motherboard MB1.

FIG. 10illustrates examples of the states of the tables TBLs
after the startup HDDs are connected to motherboards MBs
by the capture start thread indicated by (a) of FIG. 9. In other
words, FIG. 10 illustrates the states of the tables TBLs before
the capture start thread starts the capture process. In FIG. 10,
shaded areas are portions of the tables TBLs in which the
states have changed from the states illustrated in FIG. 8. The
tables MBTBL, HDDTBL, CHKTBL, and FAILTBL illus-
trated in FIG. 8 have not changed, and thus, an illustration of
these tables is omitted in FIG. 10.

The table CNTBL indicates that the HDD29 corresponding
to the port P29 is connected to the motherboard MB1 corre-
sponding to the port P(1, 8) and that the HDD30 correspond-
ing to the port P30 is connected to the motherboard MB2
corresponding to the port P(2, 8). The table MSTBL indicates
that the motherboards MB1 and MB2 are performing a data
capturing operation. The table HSTBL indicates that the

10

15

20

25

30

35

40

45

50

55

60

65

16
HDD29 and HDD30 are used for installing and starting the
OS and the capture program CP.

Power is not supplied to the motherboards MB3 and MB4,
which are in the state of “not used” in the table MSTBL, and
thus, power is not consumed in the motherboards MB3 and
MB4. Power is not supplied to the HDDs which are in the
state of “not used” in the table HSTBL, and thus, power is not
consumed in such HDDs. By interrupting the supply of power
to motherboards MBs and HDDs which are not operated, it is
possible to reduce the power consumed in the information
processing system SYS, unlike a case in which power is
supplied to such MBs and HDDs.

FIG. 11 illustrates examples of the states of the tables TBLs
after the capture process indicated by (b) of FIG. 9 has started
to write data into the HDD1 through HDD4. In FIG. 11,
shaded areas are portions of the tables TBLs in which the
states have changed from the states illustrated in FIG. 10.

In the state illustrated in FIG. 11, the motherboard MB1 is
writing data into the HDD1 and HDD2 in a distributed man-
ner, and the motherboard MB2 is writing data into the HDD3
and HDD4 in a distributed manner. Accordingly, in the table
CNTBL, in addition to the information illustrated in FIG. 10,
information indicating that the HDD1 and HDD2 are con-
nected to the motherboard MB1 and information indicating
that the HDD3 and HDD4 are connected to the motherboard
MB2 are stored.

In the table HSTBL, the states of the HDD1, HDD2,
HDD3, and HDD4 are set to be “capturing”. In the table
INDTBL, in the fields of the start time corresponding to the
HDD1 through HDD4, time t1, 12, 13, and t4, respectively, are
stored. In the fields of the end time corresponding to the
HDD1 through HDD4, “capturing” is stored. The time t1
through t4 each indicate a date and a time at which writing of
captured data into the associated one of the HDD1 through
HDD4 was started, and each indicate a date and a time at
which data written into the associated one of the HDD1
through HDD4 was captured.

FIG. 12 illustrates examples of the states of the tables TBLs
after the capture process has started to write data into the
HDDS5 through HDDS at the same time as writing data into
the HDD1 through HDD4 in response to a connect request
thread indicated by (e) of FIG. 9. In FIG. 12, shaded areas are
portions of the tables TBLs in which the states have changed
from the states illustrated in FIG. 11.

In the table CNTBL, in addition to the information illus-
trated in FIG. 11, information indicating that the HDDS5 and
HDD#6 are connected to the motherboard MB1 and informa-
tion indicating that the HDD7 and HDDS8 are connected to the
motherboard MB2 are stored. The state of the table MSTBL
is the same as that illustrated in FIG. 11. In the table HSTBL,
in addition to the states of the HDD1 through HDD4, the
states of the HDD5 through HDDS are set to be “capturing”.
In the table INDTBL, in the fields of the start time corre-
sponding to the HDDS5 through HDDS, time t5, t6, t7, and t8,
respectively, are stored. In the fields of the end time corre-
sponding to the HDDS5 through HDDS, “capturing” is stored.
As in the time t1 through t4, the time t5 through t8 each
indicate a date and a time at which writing of captured data
into the associated one of the HDD5 through HDDS8 was
started, and each indicate a date and a time at which data
written into the associated one of the HDDS5 through HDDS8
was captured.

FIG. 13 illustrates examples of the states of the tables TBLs
after the HDD1 and HDD?2 are disconnected from the moth-
erboard MB1 and the HDD3 and HDD4 are disconnected
from the motherboard MB2 by the disconnect request thread
indicated by (g) of FIG. 9. In FIG. 13, shaded areas are



US 9,292,229 B2

17
portions of the tables TBLs in which the states have changed
from the states illustrated in FIG. 12.

From the table CNTBL illustrated in FIG. 12, information
indicating the connection between the motherboard MB1 and
the HDD1 and HDD2 and information indicating the connec-
tion between the motherboard MB2 and the HDD3 and
HDD4 have been deleted. The MSTBL is the same as that
illustrated in FIG. 11.

In the table HSTBL, the states of the HDD5, HDDS6,
HDD7, and HDD8 are maintained at “capturing”, and the
states of the HDD1, HDD2, HDD3, and HDD4 are set to be
“standby”. The state “standby” indicates that the HDD1,
HDD2, HDD3, and HDD4 are retaining valid capture data
therein.

Power is not supplied to the HDDs which are in the state of
“not used” or “standby” in the table HSTBL,, and thus, power
is not consumed in such HDDs. By interrupting the supply of
power to HDDs which have finished data capturing and which
are retaining captured data therein, it is possible to reduce the
power consumed in the information processing system SYS,
unlike a case in which power is supplied to such HDDs.

In the table INDTBL, in the fields of the end time corre-
sponding to the HDD1 through HDD4, the time t1', t2', t3',
and t4', respectively, are stored. The time t1' through t4 40
each indicate a date and a time at which captured data was
written into the associated one of the HDD1 through HDD4
for the last time, and each indicate a date and a time at which
data written into the associated one of the HDD1 through
HDD4 for the last time was captured.

FIG. 14 illustrates examples of the states of the tables TBLs
when items of data have been stored in all the HDD1 through
HDD24 used for data capturing. In FIG. 14, shaded areas are
portions of the tables TBLs in which the states have changed
from the states illustrated in F1G. 13.

Unlike the table CNTBL illustrated in FIG. 13, information
indicating the connection between the motherboard MB1 and
the HDDS and HDD6 has been deleted from the table CNTBL
illustrated in FIG. 14, and information indicating the connec-
tion between the motherboard MB1 and the HDD21 and
HDD22 is stored in the table CNTBL illustrated in FIG. 14.
Additionally, unlike the table CNTBL illustrated in FIG. 13,
information indicating the connection between the mother-
board MB2 and the HDD7 and HDDS8 has been deleted from
the table CNTBL illustrated in FIG. 14, and information
indicating the connection between the motherboard MB2 and
the HDD23 and HDD24 is stored in the table CNTBL illus-
trated in FIG. 14.

The table MSTBL is the same as that illustrated in FIG. 11.
In the table HSTBL, the states of the HDD1 through HDD20
retaining valid capture data therein are set to be “standby”,
and the states of the HDD21 through HDD24 which are
capturing data are set to be “capturing”.

In the table INDTBL, in the fields of the start time corre-
sponding to the HDD1 through HDD20, the time t1 through
120, respectively, are stored. In the fields of the end time
corresponding to the HDD1 through HDD20, the time t1'
through 120", respectively, are stored. For the sake of conve-
nience, the numbers appended to the start time and the end
time are the same as the HDD numbers. In the table INDTBL,
in the fields of the start time corresponding to the HDD21
through HDD24, the time 121, t22, 123, and 24, respectively,
are stored. In the fields of the end time corresponding to the
HDD21 through HDD24, “capturing” is stored.

As in the time t1 through t4, the time t9 through t24 each
indicate a date and a time at which writing of captured data
into the associated one of the HDD9 through HDD24 was
started. As in the time t1' through t4', the time t5' through t20'

10

20

25

30

35

40

45

50

55

60

65

18
each indicate a date and a time at which captured data was
written into the associated one of the HDD5 through HDD20
for the last time.

FIG. 15 illustrates examples of the states of the tables TBLs
when old data stored in HDDs is overwritten. In FIG. 15,
shaded areas are portions of the tables TBLs in which the
states have changed from the states illustrated in FI1G. 14.

When starting to write data into the HDD21 through
HDD24, there is no data-capturing HDD in the state of “not
used”. Accordingly, if a predetermined amount of data has
been written into each of the HDD21 through HDD24, over-
writing of data is performed in the HDD1 through HDD4,
which store the oldest data among the HDDs in the state of
“standby”.

The tables CNTBL and MSTBL are the same as those
illustrated in FIG. 11. In the table HSTBL, the states of the
HDDS5 through HDD24 which are retaining valid data are set
to be “standby”, and the states of the HDD1 through HDD4
are set to be “capturing”.

In the table INDTBL, in the fields of the start time corre-
sponding to the HDD1 through HDD4, time t25, 126, 127, and
128, respectively, are stored. In the field of the end time
corresponding to the HDD1 through HDD4, “capturing” is
stored. Additionally, in the table INDTBL, in the fields of the
end time corresponding to the HDD21 through HDD24, time
121',122',123', and 124", respectively, are stored. As in the time
t1 through t4, the time 125 through t2 each indicate a date and
a time at which writing of captured data into the associated
one of the HDD1 through HDD4 was started. As in the time t1'
through t4', the time t21' through t24' each indicate a date and
a time at which captured data was written into the associated
one of the HDD21 through HDD24 for the last time.

FIG. 16 illustrates an example of the control process illus-
trated in FIG. 9. The control process is implemented as a
result of the CPU4 of the control device 400 illustrated in FIG.
7 executing the control program PGM4, and is automatically
started after starting the control device 400.

In step S10, the control device 400 reads the setup file
stored in the ROM illustrated in FIG. 7 or a storage device
outside the control device 400, and stores information con-
cerning the read setup file in the tables MBTBL and
HDDTBL within the memory device MD4.

Then, in step S12, the control program PGM4 initializes
the tables CNTBL, MSTBL, HSTBL, and INDTBL on the
basis of the information stored in the tables MBTBL and
HDDTBL. As a result, all the fields in the tables CNTBL and
INDTBL are set to be “null”. In the table MSTBL, the states
of the motherboards MBs are set to be “not used”, and in the
table HSTBL, the states of the HDDs are set to be “not used”.
The states of the tables TBLs after step S12 is illustrated in
FIG. 8.

Then, in step S400, the control program PGM4 starts a
check thread. An example of the check thread is illustrated in
FIG. 41. By executing the check thread, a failure in an HDD
is detected, or an error of data stored in an HDD is detected
and corrected. Ifthe information processing system SYS does
not have a function of detecting a failure in an HDD or a
function of detecting and correcting an error, step S400 is not
executed.

Then, in step S16, the control program PGM4 determines
whether a command has been received from a motherboard
MB or the console CNSL. If a command has been received,
the control program PGM4 shifts the process to step S18. Ifa
command has not been received, the control program PGM4
repeats step S16.

In step S18, the control program PGM4 determines
whether a connect request to connect an HDD has been



US 9,292,229 B2

19

received from one of the motherboards MBs. If a connect
request has been received, the control program PGM4 shifts
the process to step S100. If a connect request has not been
received, the control program PGM4 shifts the process to step
S20.

In step S20, the control program PGM4 determines
whether a disconnect request to disconnect an HDD has been
received from one of the motherboards MBs. If a disconnect
request has been received, the control program PGM4 shifts
the process to step S100. If a disconnect request has not been
received, the control program PGM4 shifts the process to step
S24.

In step S100, the control program PGM4 starts a switch
thread for connecting an HDD to a motherboard MB or for
disconnecting an HDD from a motherboard MB. After start-
ing the switch thread, the control program PGM4 shifts the
process to step S24. An example of the switch thread is
illustrated in FIG. 18.

In step S24, the control program PGM4 determines
whether a capture start request has been received from the
console CNSL. If a capture start request has been received,
the control program PGM4 shifts the process to step S200. If
a capture start request has not been received, the control
program PGM4 shifts the process to step S26.

In step S200, the control program PGM4 starts the capture
start thread for causing a motherboard MB to start capturing
data. After starting the capture start thread, the control pro-
gram PGM4 returns the process to step S16. An example of
the capture start thread is illustrated in FIG. 17.

In step S26, the control program PGM4 determines
whether a search request has been received from the console
CNSL. If a search request has been received, the control
program PGM4 shifts the process to step S300. If a search
request has not been received, the control program PGM4
returns the process to step S16.

In step S300, the control program PGM4 starts the search
thread for searching for data stored in the HDDs. After start-
ing the search thread, the control program PGM4 returns the
process to step S16. An example of the search thread is
illustrated in FIGS. 28 and 29.

FIG. 17 illustrates an example of the capture start thread
started in step S200 in FIG. 16. The capture start thread is
implemented as a result of the CPU4 ofthe control device 400
executing the control program PGM4 in response to an
instruction from the console CNSL.

In step S202, the control program PGM4 determines
whether motherboards MBs specified by the console CNSL
have been selected. If it is found in step S202 that the moth-
erboards MBs specified by the console CNSL have been
selected, the process proceeds to step S212. If not all the
motherboards MBs have been selected, the process proceeds
to step S204.

In step S204, the control program PGM4 refers to the table
MSTBL and selects one of the unused motherboards MBs.
Then, in step S206, the control program PGM4 refers to the
table HSTBL and selects one unused startup HDD.

Then, in step S208, the control program PGM4 controls the
switching device 300 so that the selected motherboard MB
and the selected startup HDD may be connected to each other.
Then, step S210, the control program PGM4 updates the
tables CNTBL, MSTBL, and HSTBL.

The control program PGM4 repeats steps S204, S206,
S208, and S210 until all the motherboards MBs that will
execute a data capturing operation have been selected. For
example, as illustrated in FIG. 10, the updated table CNTBL
indicates that the motherboard MB1 and the HDD29 are
connected to each other and that the motherboard MB2 and

10

15

20

25

30

35

40

45

50

55

60

65

20
the HDD30 are connected to each other. The updated table
MSTBL indicates that the motherboards MB1 and MB2 are
set to be “capturing”, and the updated table HSTBL indicates
that the HDD29 and HDD30 are set to be “started”.

Ifthe control program PGM4 determines in step S202 that
all the motherboards MBs which will execute a data capturing
operation have been selected, the process proceeds to step
S212. In step S212, the control program PGM4 waits until the
connecting device 300 finishes connecting the selected moth-
erboards MBs and the corresponding HDDs. For example, the
control device 400 determines whether or not the connecting
device 300 has finished the connection by monitoring infor-
mation concerning the inside of the connecting device 300 via
the control port CNTP of the connecting device 300 illus-
trated in FIG. 5.

After the completion of the connection between the moth-
erboards MBs and the HDDs, in step S214, the control pro-
gram PGM4 determines whether all the motherboards MBs
specified by the console CNSL have been initialized. If all the
motherboards MBs have been initialized, the process pro-
ceeds to step S222. If not all the motherboards MBs have been
initialized, the process proceeds to step S216.

In step S216, the control program PGM4 selects one of the
motherboards MB which have not been initialized. Then, in
step S218, the control program PGM4 installs the OS and the
capture program CP into the startup HDD connected to the
selected motherboard MB through the use of the selected
motherboard MB. Installation may be performed by using a
remote installation method, such as a kickstart installation
method. Then, in step S220, the control program PGM4
restarts the selected motherboard MB. The restarted mother-
board MB executes the OS and is ready to execute the capture
process.

Ifthe control program PGM4 determines in step S214 that
all the motherboards MBs specified by the console CNSL
have been initialized, the process proceeds to step S222. In
step S222, the control program PGM4 waits until the moth-
erboards MBs are restarted. Then, in step S224, the control
program PGM4 determines whether all the motherboards
MBs specified by the console CNSL have started the capture
process. If all the motherboards MBs have started the capture
process, the control program PGM4 quits the capture start
thread. If there is any motherboard MB which has not started
the capture process, the process proceeds to step S226.

In step S226, the control program PGM4 selects a mother-
board MB which has not started the capture process from
among the selected motherboards MBs. Then, in step S500,
the control program PGM4 starts the capture process of the
motherboard MB selected in step S226. The capture process
is started by executing, for example, a remote shell program.

FIG. 18 illustrates an example of the switch thread started
in step S100 illustrated in FIG. 16. The switch thread is
implemented as a result of the CPU4 ofthe control device 400
executing the control program PGM4 in response to a connect
request or a disconnect request provided from a motherboard
MB which is executing the capture process.

In step S102, the control program PGM4 determines
whether a connect request to connect an HDD or a disconnect
request to disconnect an HDD has been received from the
motherboard MB. If a connect request has been received, the
process proceeds to step S104. If a disconnect request has
been received, the process proceeds to step S124.

In step S104, the control program PGM4 sets the number of
new HDDs specified by the motherboard MB to be a variable
M. Then, in step S106, the control program PGM4 determines
whether steps S108 through S122 have been repeated M
times. If steps S108 through S122 have been repeated M



US 9,292,229 B2

21

times, it means that the specified number M of HDDs have
been connected, and thus, the process proceeds to step S136.

It it is found in step S106 that the specified number M of
HDDs have not been connected, the process proceeds to step
S108. In step S108, the control program PGM4 refers to the
table HSTBL and determines whether there is an unused
data-capturing HDD. If there is an unused data-capturing
HDD, the process proceeds to step S110. If there is no unused
data-capturing HDD, the process proceeds to step S114.

In step S110, the control program PGM4 selects one
unused data-capturing HDD. Then, in step S112, the control
program PGM4 registers the selected HDD number
(HDDNo) in the table INDTBL. The process then proceeds to
step S116.

If it is found in step S108 that there is no unused data-
capturing HDD, the process proceeds to step S114. In step
S114, the control program PGM4 refers to the table INDTBL
and selects the HDD having the earliest end time from among
standby HDDs. Then, the process proceeds to step S116. In
this case, the standby HDDs are retaining captured data
therein.

In step S116, the control program PGM4 controls the con-
necting device 300 so that the selected HDD may be con-
nected to the motherboard MB which has issued the connect
request. Then, in step S118, the control program PGM4
updates the tables CNTBL and HSTBL. For example,
examples of the tables CNTBL and HSTBL in which M
HDDs are connected when the capture process is started are
illustrated in FIG. 11. Examples of the tables CNTBL and
HSTBL in which, in addition to M HDDs which have already
been connected, M HDDs are newly connected during the
capture process are illustrated in FIG. 12. FIGS. 11 through
15 illustrate examples of the tables when the variable M is
four.

Then, in step S120, the control program PGM4 writes the
current time into the field of the start time in the table
INDTBL corresponding to the HDD connected in step S116.
Then, in step S122, the control program PGM4 writes “cap-
turing” into the field of the end time in the table INDTBL
corresponding to the HDD connected in step S116. The pro-
cess then returns to step S106.

Ifitis found in step S102 that a disconnect request has been
received, the process proceeds to step S124. In step S124, the
control program PGM4 sets the number of HDDs specified by
the motherboard MB to be a variable M. Then, in step S126,
the control program PGM4 determines whether steps S128
through S134 have been repeated M times. If steps S128
through S134 have been repeated M times, it means that the
specified number M of HDDs have been disconnected, and
thus, the process proceeds to step S136.

It it is found in step S126 that the specified number M of
HDDs have not been disconnected, the process proceeds to
step S128. In step S128, the control program PGM4 refers to
the table INDTBL and selects an HDD in which the start time
is the earliest time and the end time is “capturing”. Then, in
step S130, the control program PGM4 disconnects the HDD
selected in step S128 from the motherboard MB which has
issued the disconnect request.

Then, in step S132, the control program PGM4 updates the
tables CNTBL and HSTBL. For example, in the table
CNTBL, information indicating a connection relation
between the motherboard MB and the selected HDD is
deleted, and in the table HSTBL, the state of the HDD dis-
connected from the motherboard MB is set to be “standby”.
Then, in step S134, the control program PGM4 writes the
current time into the field of the end time in the table INDTBL

10

15

20

25

30

35

40

45

50

55

60

65

22

corresponding to the HDD disconnected in step S130. Then,
the process returns to step S126.

After M HDDs have been connected to or disconnected
from the motherboard MB, in step S136, the control program
PGM4 quits the switch thread.

FIG. 19 illustrates an example of the allocation of storage
areas of each of the data-capturing HDD1 through HDD24
illustrated in FIG. 8. In the storage areas of the data-capturing
HDD, a plurality of data units, each including a separator, a
time stamp, and a data area, are repeatedly allocated. In the
field of the head address, a time stamp indicating the start time
of data capturing into the HDD is stored. In the field of the
address A1, a head data identifier is stored, and in the field of
the address A6, a final data identifier is stored. A predeter-
mined margin is provided between the final data identifier and
the tail address.

The data area includes a region of metadata indicating the
attribute of data and a region in which captured data is stored.
Since the length of the region in which data is stored is
undefined, metadata includes information concerning the
data size. Accordingly, the intervals between the addresses
A2, A3, A4, and A5 indicating the positions of the separators
are not equal. The separator includes, for example, a data
sequence which does not appear as captured data. The time
stamp indicates a time at which corresponding data was cap-
tured.

The address VT1 is a threshold indicating that there is not
much space in the storage area of the HDD. If the write
address has exceeded the threshold VT1, the motherboard
MB which is writing data into the HDD determines that the
space of the HDD has become small, and requests the control
device 400 to connect another HDD into which captured data
will be written. The connection of another HDD is executed
by the control device 400 on the basis of the connect request
thread (FIG. 22) started in step S530 in FIG. 21.

The address VT2 is a threshold indicating that there is no
space in the storage area of the HDD. If the write address has
exceeded the threshold VT2, the motherboard MB which is
writing data into the HDD writes the final data identifier after
the final data and stops writing data into the HDD. The moth-
erboard MB also requests the control device 400 to discon-
nect the HDD in which the write address has exceeded the
threshold VT2. The disconnection of the HDD is executed by
the control device 400 on the basis of the disconnect request
thread (FIG. 23) started in step S534 in FIG. 21.

During a period from when the write address of the HDD
has exceeded the threshold VT1 until it reaches the threshold
VT2, at the same time as writing data into the HDD, the
motherboard MB also writes data into an HDD which has
been newly connected on the basis of the connect request
thread. The difference between the address of the threshold
VT1 and that of the threshold VT2 is set such that it is possible
to write captured data into the HDD during a period from
when the connect request thread has been issued due to the
fact that the HDD has exceeded the threshold VT1 until when
anew HDD is connected. For example, the address value of
the threshold VT1 may be expressed by equation (2):

VT1=VI2-(MSP/M)* TMAX )

where MSP is the maximum speed at which data is cap-
tured, and M is the number of HDDs connected to the moth-
erboard MB, TMAX is the maximum wait time until a new
HDD is connected, and * denotes multiplication.

The maximum wait time TMAX is a length of time from
when the motherboard MB has issued a connect request to
connect an HDD until when the connection state of the con-
necting device 300 is switched and the OS of the motherboard



US 9,292,229 B2

23

MB recognizes the new HDD. The maximum wait time
TMAX is a constant which depends on the specifications of
the information processing system SYS. By setting the
threshold VT1 by using equation (2), it is possible to write
captured data into HDDs without causing the loss of data even
while the HDDs are being switched.

Since MSP/M in equation (2) is equal to HSP in the above-
described equation (1), the threshold VT1 may be expressed
by equation (3) by substituting equation (2) into equation (1).

VT1=VT2-HSP*IMAX 3)

The address value of the threshold VT2 may be expressed
by equation (4) by using the tail address of the HDD:

VI2=tail address—(SS+7S+DMAX+MS+ES) 4

where SS is the size of the separators, TS is the size of the
time stamps, DMAX is the maximum data size, MS is the size
of metadata, and ES is the size of the final data identifier. The
maximum data size DMAX is a constant which depends on a
communication protocol used for data capturing.

By setting the threshold VT2 by using equation (4), even
when the HDD has exceeded the threshold VT2, itis possible
to write data into the HDD. In this manner, the address values
of the thresholds VT1 and VT2 may be determined from the
storage capacity of an HDD, the data transfer rate, and a wait
time for the connection of an HDD.

FIGS. 20 and 21 illustrate an example of the capture pro-
cess started in step S500 illustrated in FIG. 17. The capture
process is executed by the CPU of a motherboard MB which
has received an instruction to start the capture process from
the control device 400.

In step S502, the capture process sets the number of HDDs
into which captured data is written in a distributed manner to
be a variable M. If data is not written in a distributed manner,
the variable M is set to be 1. The capture process also initial-
izes a variable “period” and lists LIST1 and LIST2 used for a
capturing operation. The lists LIST1 and LIST?2 are storage
areas or registers to which a predetermined size is allocated.

The variable “period” is the number of times (total number)
that a set of HDDs connected to a motherboard MB is con-
nected. The initial value of the variable “period” is 1. The
variable “period” is incremented by one every time a new
HDD is connected after the amount of data written into an
HDD has exceeded a predetermined amount (the threshold
VT1 illustrated in FIG. 19).

Inthe lists LIST1 and LIST2, the HDD numbers (HDDNo)
are stored. The lists LIST1 and LIST?2 in the initial state are
setto be “null”. In the list LIST1, the HDD numbers of HDDs
which have been connected at an odd-numbered time are
stored, and when such HDDs are disconnected, the list LIST1
is set to be “null”. In the list LIST2, the HDD numbers of
HDDs which have been connected at an even-numbered time
are stored, and when such HDDs are disconnected, the list
LIST?2 is set to be “null”.

In step S504, the capture process starts the connect request
thread for connecting data-capturing HDDs. An example of
the connect request thread is illustrated in FIG. 22. Then, in
step S506, the capture process determines whether “null” is
input in the list LIST1. If “null” is input in the list LIST1, it
means that the connection of data-capturing HDDs to the
motherboard MB has not finished, and thus, the process pro-
ceeds to step S508. If “null” is not input in the list LIST1, it
means that there are data-capturing HDDs which have been
connected to the motherboard MB, and thus, the process
proceeds to step S512.

In step S508, the capture process waits until data-capturing
HDDs are connected to the motherboard MB. It is possible to

10

15

20

25

30

35

40

45

50

55

60

65

24

determine whether HDDs are connected to the motherboard
MB by querying the control device 400 the motherboard MB.
Then, in step S510, the capture process stores the connected
HDD numbers (for example, HDD1 and HDD?2) in the list
LIST1.

Then, instep S512, the capture process determines whether
the variable “period” is an odd number. If the variable
“period” is an odd number, the process proceeds to step S514.
If the variable “period” is an even number, the process pro-
ceeds to step S516.

In step S514, the capture process stores the HDD numbers
stored in the list LIST1 in a variable NOWHDD, and stores
the HDD numbers stored in the list LIST2 in a variable
ENDHDD. In step S516, the capture process stores the HDD
numbers stored in the list LIST2 in a variable NOWHDD, and
stores the HDD numbers stored in the list LIST1 in a variable
ENDHDD. In the HDDs indicated by the variable
NOWHDD, data written into such HDDs has not reached the
position indicated by the threshold VT1. In the HDDs indi-
cated by the variable ENDHDD, data written into such HDDs
has reached the position indicated by the threshold VT1.

Then, in step S518 in FIG. 21, the capture process reads
data from a buffer which stores data therein supplied from the
switching device 500 illustrated in FIG. 5. The buffer is
disposed, for example, within the motherboard MB. Then, in
step S520, the capture process writes the data read from the
buffer into M HDDs indicated by the variable NOWHDD in
a distributed manner.

Then, instep S522, the capture process determines whether
the variable ENDHDD indicates “null”. If the variable
ENDHDD indicates “null”, it means that the capture process
is writing data only into the HDDs indicated by the variable
NOWHDD since HDD numbers are not set in the variable
ENDHDD until the write address has exceeded the threshold
VT1. In this case, the process proceeds to step S528. If the
variable ENDHDD does not indicate “null”, the process pro-
ceeds to step S524.

In step S524, the capture process determines whether the
write address of each HDD indicated by the variable
ENDHDD has exceeded the threshold VT2. The write
address indicates, for example, a storage area of an HDD into
which data is written, and data is written into the HDD in
ascending order of the address. If it is found in step S524 that
the write address of each HDD has exceeded the threshold
VT2, the process proceeds to step S528 so that the capture
process may stop writing data into the HDD. If the write
address has not exceeded the threshold VT2, it means that it is
still possible to write data into the HDD, and thus, the process
proceeds to step S526.

In step S526, the capture process writes data read from the
buffer into the HDDs indicated by the variable ENDHDD in
a distributed manner. In order to connect M data-capturing
HDDs expressed by equation (1) to the motherboard MB, it is
determined that the amount of data per unit time which is read
into the buffer is smaller than the amount of data per unit time
which is written into M HDDs. This makes it possible to write
data into the HDDs without causing the overflow of data in the
buffer.

In step S528, the capture process determines whether the
write address of an HDD indicated by the variable NOWHDD
has exceeded the threshold VT1. If captured data is written
into a plurality of HDDs in a distributed manner (M=a mul-
tiple number), the capture process determines whether the
write address of at least one HDD has exceeded the threshold
VT1. If the write address has exceeded the threshold VT1, it
means that there is not much space in the HDD indicated by
the variable NOWHDD, and thus, the process proceeds to



US 9,292,229 B2

25
step S530. If the write address has not exceeded the threshold
VT1, it means that there is enough space in the HDD indicated
by the variable NOWHDD, and thus, the process proceeds to
step S532.

In step S530, the capture process starts the connect request
thread for connecting a new data-capturing HDD to the moth-
erboard MB. By starting the connecting processing for a new
HDD at a time point at which the write address has exceeded
the threshold VT1, it is possible to continuously writing data
into HDDs even while capturing-data HDDs are being
switched. The process then proceeds to step S532.

In step S532, the capture process determines whether the
write address of an HDD indicated by the variable ENDHDD
has exceeded the threshold VT2. If captured data is written
into a plurality of HDDs in a distributed manner (M=a mul-
tiple number), the capture process determines whether the
write address of at least one HDD has exceeded the threshold
VT2. If the write address has exceeded the threshold VT2, the
process proceeds to step S534 so thatthe capture process may
stop writing data into the HDD. If the write address has
exceeded the threshold VT2, it means that a new HDD has
already been connected to the motherboard MB. If the write
address has not exceeded the threshold VT2, it means that a
new HDD has not connected to the motherboard MB, and
thus, the process returns to step S512 in FIG. 20.

In step S534, the capture process starts the disconnect
request thread for disconnecting the data-capturing HDD
indicated by the variable ENDHDD from the mother board
MB. The process then returns to step S512.

FIG. 22 illustrates an example of the connect request thread
started in step S530 in FIG. 21. The connect request thread is
started by the capture process which is being executed by the
motherboard MB.

In step S540, the connect request thread issues a connect
request to connect new M HDDs which will capture data to
the control device 400. Then, in step S542, the connect
request thread waits until M HDDs which will capture data
have been connected.

Then, in step S544, the connect request thread increments
the variable “period” by one. Then, in step S546, the connect
request thread determines whether the variable “period” is an
odd number. If the variable “period” is an odd number, the
process proceeds to step S548. If the variable “period” is an
even number, the process proceeds to step S550.

In step S548, the connect request thread stores the newly
connected HDD numbers in the list LIST1, and then, the
connect request thread is terminated. In step S550, the con-
nect request thread stores the newly connected HDD numbers
in the list LIST2, and then, the connect request thread is
terminated.

FIG. 23 illustrates an example of the disconnect request
thread started in step S534 in FI1G. 21. The disconnect request
thread is started by the capture process which is being
executed by the motherboard MB.

In step S560, the disconnect request thread determines
whether the variable “period” is an odd number. If the vari-
able “period” is an odd number, the process proceeds to step
S562. If the variable “period” is an even number, the process
proceeds to step S566.

In step S562, the disconnect request thread issues a discon-
nect request to disconnect the HDDs indicated by the HDD
numbers stored in the list LIST2 from the motherboard MB to
the control device 400. Then, in step S564, the disconnect
request thread sets the list LIST2 to be “null”, and then, the
disconnect request thread is terminated.

In step S566, the disconnect request thread issues a discon-
nect request to disconnect the HDDs indicated by the HDD

10

15

20

25

30

35

40

45

50

55

60

65

26

numbers stored in the list LIST1 from the motherboard MB to
the control device 400. Then, in step S568, the disconnect
request thread sets the list LIST1 to be “null”, and then, the
disconnect request thread is terminated.

FIG. 24 illustrates an example of a data capturing operation
executed by the capture process illustrated in FIGS. 20
through 23. For the sake of simple representation, in this
example, as data-capturing HDDs, four pairs of HDDs
(HDD1 and HDD2), (HDD5 and HDD6), (HDD9 and
HDD10), and (HDD13 and HDD14) are used. In FIG. 24, the
narrow rectangles indicate that corresponding HDDs are
being connected to the motherboard MB1 illustrated in FIG.
5, that is, captured data may be written into such HDDs.

First, the HDD1 and HDD?2 are connected to the mother-
board MB1 illustrated in FIG. 5, and captured data is sequen-
tially written into the HDD1 and HDD2 ((a) of FIG. 24).
Since the variable “period” is 1 in the initial state, the variable
NOWHDD is set to be HDD1 and HDD2 indicated by the list
LIST1. The list LIST2 and the variable ENDHDD indicate
“null”.

When the write address of one of the HDD1 and HDD2
indicated by the variable NOWHDD has exceeded the thresh-
old VT1, the unused HDD5 and HDD6 are connected to the
motherboard MB1 and the variable “period” is changed to 2
((b) of FIG. 24). The variable NOWHDD is set to be HDD5
and HDD6 indicated by the list LIST2, and the variable
ENDHDD is set to be HDD1 and HDD2 indicated by the list
LIST1 ((c) of FIG. 24).

Then, when the write address of one of the HDD1 and
HDD2 indicated by the variable ENDHDD has exceeded the
threshold VT2, the HDD1 and HDD2 indicated by the list
LIST1 are disconnected from the motherboard MB1 ((d) of
FIG. 24). By connecting the HDD5 and HDD6 to the moth-
erboard MB1 during a period from when the write address of
one of the HDD1 and HDD2 has exceeded the threshold VT1
until the write address reaches the threshold VT2, it is pos-
sible to continuously write data into at least one of the pair of
HDD1 and HDD2 and the pair of HDD5 and HDD6. For
example, even when the supply of power to HDDs in the state
of “not used” or “standby” is interrupted, the threshold VT1
and VT2 may be set appropriately by considering the time at
which the supply of power to the HDDs is restarted, thereby
making it possible to store data in the HDDs without causing
the loss of data while implementing a reduction in power
consumption.

When the write address of one of the HDD5 and HDD6
indicated by the variable NOWHDD has exceeded the thresh-
old VT1, the unused HDD9 and HDD10 are connected to the
motherboard MB1 and the variable “period” is changed to 3
((e) of FIG. 24). The variable NOWHDD is set to be HDD9
and HDD10 indicated by the list LIST1, and the variable
ENDHDD is set to be HDDS and HDD6 indicated by the list
LIST2 ((D) of FIG. 24).

Then, when the write address of one of the HDD5 and
HDD6 indicated by the variable ENDHDD has exceeded the
threshold VT2, the HDD5 and HDD#é6 indicated by the list
LIST2 are disconnected from the motherboard MB1 ((g) of
FIG. 24). Thereafter, by sequentially switching the pairs of
HDDs, captured data is written into the HDDs without caus-
ing the loss of data.

When the write address of one of the HDD13 and HDD14
indicated by the variable NOWHDD has exceeded the thresh-
old VH1, the HDD1 and HDD2 storing the oldest data among
HDDs set in the state of “standby” are connected to the
motherboard MB1 ((h) of FIG. 24). Then, captured data is
written into the HDD1 and HDD2, together with the HDD13
and HDD14.



US 9,292,229 B2

27

FIG. 25 illustrates an example of a sequence of a search
operation performed by the information processing system
SYS illustrated in FIG. 5. That is, FIG. 25 illustrates an
example of a sequence concerning the information process-
ing system SYS which operates as a search device for search-
ing for captured data. In the following description, the opera-
tion performed by the control device 400 illustrated in FIG. 7
includes an operation performed by the CPU4 of the control
device 400, and the operation performed by the motherboards
MBs includes an operation performed by the CPUs of the
motherboards MBs.

In this example, after the state illustrated in FIG. 15, the
HDD1 through HDD4 which have been capturing data have
become full of data, and the HDD5 through HDDS8 have
started to capture data, and then, a search request is issued for
the first time. HDDs in which items of data to be searched for
are stored are selected by the search thread started by the
control device 400 on the basis of a period of a search opera-
tion (start time Ts and end time Te in step S302 of FIG. 28)
received together with a search request from the console
CNSL. In this example, the HDD1 through HDD4 are
selected as HDDs including items of data to be searched for.

For the sake of simple representation, in FIG. 25, opera-
tions performed by the HDD3, HDD4, the motherboard MB4
which searches for data stored in the HDD3 and HDD4, and
the HDD32 are indicated by broken-line-bordered rectangu-
lar boxes, and an explanation thereof will be omitted. The
operations performed by the motherboard MB4, HDD32,
HDD3, and HDD4 may be understood by reading the moth-
erboard MB3, HDD31, HDD1, and HDD2 as the mother-
board MB4, HDD32, HDD3, and HDD4, respectively, in
FIG. 25.

The control device 400 executes the search thread in
response to a search request input through the console CNSL
((a) of FIG. 25). For example, the search thread outputs con-
trol information for connecting the motherboard MB3 and the
HDD?31 to the connecting device 300. The connecting device
300 connects the motherboard MB3 and the HDD31 on the
basis of the control information. After the motherboard MB3
and the HDD31 have been connected to each other, the search
thread installs the OS and the search program SP into the
HDD31 through the use of the motherboard MB3. The instal-
lation method is similar to that for the capture program CP
illustrated in FIG. 9.

After installing the OS and the search program SP in the
HDD31, the motherboard MB3 is restarted. The CPU of the
motherboard MB3 starts the OS and starts to access the
HDD31. Thereafter, the motherboard MB3 and the HDD31
are operable as a search server. The motherboard MB3 sends
an installation completion response indicating that installa-
tion has been completed to the control device 400. The search
thread may connect multiple pairs of motherboards MB and
HDDs and cause them to serve as multiple servers. In this
case, if there are multiple HDDs to be searched, data may be
searched for by starting the multiple search servers, thereby
reducing the search time compared with a case in which a
single search server is used for searching for data.

In this embodiment, the search thread is able to start a
desired number of search servers by using unused mother-
boards MB and unused HDDs in response to an instruction
from the console CNSL. With this arrangement, it is possible
to start an optimal number of search servers in accordance
with a range to be searched, thereby making it possible to
optimize the search time in accordance with a request input
through the console CNSL.

Upon receiving the installation completion response, the
search thread outputs an instruction to start a search process to

10

20

25

30

35

40

45

50

55

60

65

28

the motherboard MB3. In response to an instruction to start
the search process, the motherboard MB3 starts the search
process ((b) of FIG. 25).

The search process starts at least one HDD search thread.
The HDD search thread is started, for example, for every
HDD to be searched ((¢) of FIG. 25). In this example, an HDD
search thread (1) searches for captured data stored in the
HDD1, and an HDD search thread (2) searches for captured
data stored in the HDD2.

Upon completing a search conducted by the HDD search
thread (1) and the HDD search thread (2), the search process
sends search results to the search thread which is being
executed by the control device 400 ((d) of FIG. 25). The
search thread sends the search results to the console CNSL
((e) of FIG. 25), and outputs control information for discon-
necting the HDD1 and HDD2 from the motherboard MB3 to
the connecting device 300 ((f) of FIG. 25). The connecting
device 300 disconnects the HDD1 and HDD2 from the moth-
erboard MB3 on the basis of the control information. The
control process then quits the search thread.

After completing the search thread, the control process
may still maintain the connection between the motherboard
MB3 and the HDD31. In this case, the search thread to be
started in response to a subsequent search request installs
neither of the OS nor the search program SP in the HDD31.

After completing the search thread, the control process
may interrupt the supply of power to the motherboard MB3
and the HDD31 while the connection between the mother-
board MB3 and the HDD31 is being maintained. In this case,
since the HDD31 retains the OS and the search program SP
therein, the search thread to be started in response to a sub-
sequent search request merely restarts the motherboard MB3.

After completing the search thread, the control process
may disconnect the HDD31 from the motherboard MB3 and
may interrupt the supply of power to the motherboard MB3
and the HDD31. In this case, since the HDD31 retains the OS
and the search program SP therein, the search thread to be
started in response to a subsequent search request merely
connects the HDD31 to the motherboard MB3 and restarts the
motherboard MB3.

A determination as to whether or not the supply of power is
interrupted after completing the search thread may be made
by the control process depending on the frequency of occur-
rence of a search request. Alternatively, the console CNSL
may provide, together with a search key KEY, an instruction
concerning the above-described determination to the control
process.

FIG. 26 illustrates examples of the states of the tables TBLs
after search HDDs are connected to a motherboard MB by the
search thread illustrated in FIG. 25. In other words, FIG. 26
illustrates the states of the tables TBLs before the search
thread of the control device 400 starts the search process of
the motherboard MB3. The tables MBTBL and HDDTBL
illustrated in FIG. 8 have not changed, and thus, an illustration
of these tables is omitted in FIG. 26.

Asin FIG. 25, in FIG. 26, after the state illustrated in FIG.
15, the HDD1 through HDD4 which have been capturing data
have become full of data, and the HDDS5 through HDD8 have
started to capture data, and then, a search request is issued for
the first time. In FIG. 26, shaded areas are portions of the
tables TBLs in which the states have changed as a result of
starting the search thread.

InFIG. 26, the control device 400 receives a search request
from the console CNSL while data is being captured into the
HDDS5 through HDDS. Data indicating a time and date at
which data capturing was performed included in the search
request is being retained in the HDD1 through HDD4. The



US 9,292,229 B2

29

search thread illustrated in FIG. 25 adds information indicat-
ing the connection between the motherboard MB3 and the
HDD31 and information indicating the connection between
the motherboard MB4 and the HDD32 to the table CNTBL.
The search thread also sets the states of the motherboards
MB3 and MB4 in the table MSTBL to be “searching”, and
sets the states of the HDD31 and HDD32 in the table HSTBL
to be “started”.

FIG. 27 illustrates examples of the states of the tables TBLs
after the search process illustrated in FIG. 25 has been started.
In FIG. 27, shaded areas are portions of the tables TBLs in
which the states have changed from the states illustrated in
FIG. 26. The tables MBTBL and HDDTBL illustrated in FIG.
8 have not changed, and thus, an illustration of these tables is
omitted in FIG. 27.

The search thread illustrated in FIG. 25 updates the tables
CNTBL and HSTBL every time each motherboard (in this
example, each of MB3 and MB4) starts the search process.
The search thread adds information that the HDD1 and
HDD?2 are connected to the motherboard MB3 and informa-
tion that the HDD3 and HDD4 are connected to the mother-
board MB4 to the table CNTBL. Since the HDD1 through
HDD4 are being searched, the states of the HDD1 through
HDD4 are set to be “searching” in the table HSTBL. The
other states of the table HSTBL are the same as those illus-
trated in FIG. 26.

In this embodiment, for example, the data capturing opera-
tion is performed by the motherboards MB1 and MB2, and
the data search operation is performed by the motherboards
MB3 and MB4 , which are different from the motherboards
MB1 and MB2. Accordingly, as in the embodiment illustrated
in FIGS. 1 through 4C, the motherboards MB1 and MB2,
which are preforming a data capturing operation, are able to
stably write data which demands a high throughput, such as
voice data, into HDDs, regardless of whether or not a search
request has been sent. Meanwhile, the motherboards MB3
and MB4 are able to concentrate on a search operation with-
out being influenced by interrupt of a data capturing operation
performed in real time.

FIGS. 28 and 29 illustrate an example of the search thread
started in step S300 in FIG. 16. As illustrated in FIG. 25, the
search thread is implemented as a result of the control device
400 executing the control program PGM4 in response to a
search request input from the console CNSL.

Data to be stored in HDDs is, for example, voice data
collected from conversation being carried out on cellular
phones and received via a data center. A computer disposed in
the data center includes the console CNSL illustrated in FIG.
5. Uponthe occurrence of a failure in acommunication line of
cellular phones, a search key KEY (the start time Ts and the
end time Te) including a time and a date on the occurrence of
a failure is sent, together with information indicating the
number M of motherboards MBs used for performing a
search operation, from the console CNSL to the information
processing system SYS.

The control device 400 of the information processing sys-
tem SYS starts the search thread. The search thread specifies
HDDs which store voice data defined by the start time T's and
the end time Te, reads the voice data from the HDDs, and
sends the read voice data to the console CNSL. The computer
in the data center including the console CNSL then analyzes
noise, for example, contained in the read voice data received
from the information processing system SYS, thereby deter-
mining the cause of the failure.

In step S302, the search thread first sets the number of
motherboards MBs (search servers) that perform a search
operation and the start time and the end time included in the

10

15

20

25

30

35

40

45

50

55

60

30

search key KEY received from the console CNSL to be vari-
ables M, Ts, and Te, respectively. The search thread also
initializes a list LIST indicating HDDs to be searched to be
“null”. In the list LIST, information indicating HDDs to be
searched is registered.

Then, in step S304, the search thread sets a variable K to be
1. The variable K indicates a record number of the table
INDTBL in which index information concerning the time
stamps (start time and end time) indicating times at which
items of data were captured is stored. The record number is a
line number of the table INDTBL illustrated in, for example,
FIG. 27. In the following description, the line number of the
table INDTBL will also be called a “record number K”.

Then, in step S306, the search thread determines whether
all the records of the INDTBL have been scanned. If all the
records have been scanned, the process proceeds to step S316.
If not all the records have been scanned, the process proceeds
to step S308.

In step S308, the search thread reads the start time and the
end time of the K-th record of the table INDTBL (the start
time and the end time of data stored in a subject HDD). Then,
in step S310, the search thread determines, on the basis of the
start time and the end time read from the K-th record, whether
the subject HDD stores data which was captured during a
period from the start time Ts to the end time Te included in the
search key KEY.

For example, if the end time stored in the K-th record is
earlier than the start time Ts or if the start time stored in the
K-th record is later than the end time Te, the subject HDD
does not store data to be searched for. In other words, if one of
the start time and the end time stored in the K-th record is
included in the period from the start time Ts to the end time
Te, the subject HDD stores data to be searched for. If the
subject HDD stores data to be searched for, the search thread
shifts the process to step S312. If the subject HDD does not
store data to be searched for, the search thread shifts the
process to step S314.

In step S312, the search thread adds information concern-
ing HDD(K) corresponding to the K-th record in the list LIST.
Then, in step S314, the search thread increments the record
number K by one, and then returns the process to step S306.

If it is found in step S306 that all the records of the table
INDTBL have been scanned, the process proceeds to step
S316. In steps S316 through S324, the search thread connects
M motherboards MBs that will perform a search operation to
associated HDDs. As discussed with reference to FIG. 25, if,
after completing the search thread, the control process main-
tains the connection between the motherboard MB3 and the
HDD31, steps S316 through S324 are omitted.

In step S316, the search thread determines whether M
motherboards MBs have been selected. If M motherboards
MBs have been selected, the search thread shifts the process
to step S326. If not all M motherboards MBs have been
selected, the search thread shifts the process to step S318.

In step S318, the search thread refers to the table MSTBL
and selects one unused motherboard MB from the mother-
board pool 100 illustrated in FIG. 5. Then, in step S320, the
search thread refers to the table HSTBL and selects one
unused startup HDD from the storage drive pool 200 illus-
trated in FIG. 5.

In step S322, the search thread controls the connecting
device 300 so that the selected motherboard MB and the
selected HDD may be connected to each other. Then, in step
S324, the search thread updates the tables CNTBL, MSTBL,
and HSTBL to, for example, the states illustrated in FIG. 26.
Then, the process returns to step S316.



US 9,292,229 B2

31

If it is found in step S316 that M motherboards MBs have
been all selected, the process proceeds to step S326. In steps
S326 through S332, the search thread installs the OS and the
search program SP into each of the selected M motherboards
MBs.

If, after completing the search thread, the control process
maintains the connection between the motherboard MB3 and
the HDD31 and the supply of power to the motherboard MB3
and the HDD31, steps S326 through S332 are omitted. If,
after completing the search thread, the control process inter-
rupts the supply of power to the motherboard MB3 and the
HDD31 while maintaining the connection between the moth-
erboard MB3 and the HDD31, steps S326 through S330 are
omitted, and the search thread executes step S332 to restart
the motherboard MB.

In step S326, the search thread determines whether the
selected M motherboards MBs have been initialized. If the
selected M motherboards MBs have been all initialized, the
process proceeds to step S334. If not all the selected M
motherboards MBs have been initialized, the process pro-
ceeds to step S328. Steps S328, S330, S332, and S334 are
similar to steps S216, S218, S220, and S222, respectively,
illustrated in FIG. 17, except that the program to be installed
is different, and thus, an explanation thereof will be omitted.

Then, in step S336 of FIG. 29, the search thread sets the
value obtained by dividing the number of HDDs registered in
the list LIST by the number M of initialized motherboards
MBs to be a variable N. The variable N indicates the number
of HDD search threads which will be started simultaneously
by each motherboard MB operating as a search server. The
variable N may be calculated by rounding up the numbers of
the decimal places. If the number of HDDs is not divisible by
the number of MBs, the variable N may be set for each
motherboard MB such that the values of the variable N are
almost uniform.

In step S338, the search thread determines whether the
search processes of all the motherboards MBs operated as
search servers have started. If the search processes of all the
motherboards MBs have started, the process proceeds to step
S348. If the search processes of all the motherboards MBs
have not started, the process proceeds to step S340.

In step S340, the search thread refers to the table MSTBL
and selects one of the unused motherboards MBs. Then, in
step S342, the search thread selects N HDDs from among
HDDs registered in the list LIST. Then, in step S344, the
search thread controls the connecting device 300 so that the
selected N HDDs may be connected to the selected mother-
board MB. Then, in step S346, the search thread updates the
tables CNTBL, MSTBL, and HSTBL to, for example, the
states illustrated in FIG. 27.

In step S600, the search thread starts the search process of
the selected motherboard MB. An example of the search
process is illustrated in FIG. 30. The process then returns to
step S338.

Ifitis found in step S338 that the search processes of all the
motherboards MBs have started, the process proceeds to step
S348. In step S348, the search thread initializes a list
RSLTLIST1 to be “null”. In the RSLTLIST1, for example,
search results may be stored, or the addresses of storage areas
storing search results may be stored.

Then, in step S350, the search thread determines whether
search results of all the motherboards MBs operating as
search servers have been received. If search results of all the
motherboards MBs have been received, the process proceeds
to step S360. If search results of all the motherboards MBs
have not been received, the process proceeds to step S352.

10

15

20

25

30

35

40

45

50

55

60

65

32

In step S352, the search thread determines whether search
results of N HDDs have been received from one of the moth-
erboards MBs operating as search servers. If search results of
N HDDs have been received, the process proceeds to step
S354. If search results of N HDDs have not been received, the
process returns to step S350. That is, in step S352, the search
thread waits until search results are received from a mother-
board MB.

In step S354, the search thread adds the received search
results to the list RSCTLIST1. Then, in step S356, the search
thread controls the connecting device 300 so that the N HDDs
may be disconnected from the motherboard MB that has
output the search results.

Then, in step S358, the search thread updates the tables
CNTBL, MSTBL, and HSTBL so as to reflect the discon-
nected HDDs in the tables, and then returns to step S350.

If it is found in step S350 that search results of all the
motherboards MBs have been received, the process proceeds
to step S360. In step S360, the search thread sends the search
results stored in the list RSLTLIST1 to the console CNSL,
and terminates the processing. For example, the search thread
sends all items of data captured from the start time Ts to the
end time Te to the console CNSL.

In step S360, the search thread may send the start address
and the end address of a storage area of each HDD in which
data captured during a period from the start time T’ to the end
time Te is stored to the console CNSL. In this case, the control
process receives a command for reading data from the HDD
from the console CNSL, reads the data from the HDD, and
then sends the read data to the console CNSL.

FIG. 30 illustrates an example of the search process started
in step S600 in FIG. 29. The search process is executed for
each motherboard MB that has received an instruction to start
the search process from the control device 400 by the CPU of
the motherboard MB, as illustrated in FIG. 25.

In step S602, the search process sets the value obtained by
dividing the number of HDDs registered in the list LIST by
the number M of initialized motherboards MBs to be a vari-
able N. The variable N may be calculated in a manner similar
to step S336 of FIG. 29.

Then, in step S604, the search process determines whether
all HDD search threads corresponding to the HDDs to be
searched have started. If all the HDD search threads have
started, the process proceeds to step S608. If not all the HDD
search threads have started, the process proceeds to step
S606.

In step S606, the search process selects an HDD which has
notbeen selected. Then, in step S700, the search process starts
the HDD search thread for searching for data stored in the
HDD selected in step S606, and then returns to step S604. An
example of the HDD search thread is illustrated in FIGS. 31
through 36.

If it is found in step S604 that all HDD search threads have
started, the process proceeds to step S608. In step S608, the
search process initializes a list RSUTLIST2 to be “null”. In
the RSLTLIST?2, for example, search results may be stored, or
the addresses of storage areas storing search results may be
stored.

Then, in step S610, the search process determines whether
search results have been received from all the started HDD
search threads. If search results have been received from all
the started HDD search threads, the process proceeds to step
S616. If search results have not been received from all the
started HDD search threads, the process proceeds to step
S612.

In step S612, the search process determines whether search
results have been received from one of the HDD search



US 9,292,229 B2

33

threads. If search results have been received, the process
proceeds to step S614. If search results have not been
received, step S612 is repeated. That is, in step S612, the
search process waits until search results have been received
from one of the HDD search threads. In step S614, the search
process adds the received search results to the list
RSLTLIST2.

If it is found in step S610 that search results have been
received from all the started HDD search threads, the process
proceeds to step S616. In step S616, the search process sends
the search results stored in the list RSLUTLIST2 to the control
device 400, and terminates the processing.

FIG. 31 illustrates an example of the HDD search thread
started in step S700 in FIG. 30. As illustrated in FIG. 25, the
HDD search thread is executed for each HDD by the CPU of
an associated motherboard MB.

In step S702, the HDD search thread waits until a subject
HDD is connected to the motherboard MB. The connection
between the subject HDD and the motherboard MB is
executed by step S344 of FIG. 29. Then, in step S704, the
HDD search thread sets the start time and the end time
included in the search key KEY to be variables Ts and Te,
respectively, and also initializes a list RSLTLIST3 to be
“null” and initializes variables START and END to be 0.

In the list RSLTLIST3, for example, data obtained by con-
ducting a search, is stored. In the variable START, the start
address of a storage area of each HDD in which data to be
searched for is stored, which is determined in step S710, is
stored. In the variable END, the end address of a storage area
of each HDD in which data to be searched for is stored, which
is determined in step S740, is stored.

The start time and the end time included in the search key
KEY may also be referred to as the “start time Ts” and “end
time Te”, respectively. The start address and the end address
of'a storage area of each HDD in which data to be searched for
is stored may also be referred to as the “start address START”
and “end address END”, respectively.

Then, in step S710, the HDD search thread starts a start
address search routine illustrated in FIG. 33. In the start
address search routine, the start address START of a storage
area in an HDD in which data to be searched for is stored is
determined. Then, in step S740, the HDD search thread starts
an end address search routine illustrated in FIG. 34. In the end
address search routine, the end address END of a storage area
in an HDD in which data to be searched for is stored is
determined.

Then, in step S770, the HDD search thread reads, as search
data, data stored in an area from the start address START to
the end address END of an HDD, and stores the read search
data in the list RSLTLIST3. Then, in step S706, the HDD
search thread sends the search data stored in the list
RSLTLIST3 to the search process illustrated in FIG. 30.

FIG. 32 illustrates examples of the start address START
and the end address END determined by the HDD search
thread illustrated in FIG. 31. In FIG. 32, shaded areas are
items of search data read from the HDDs in step S770 of FIG.
31.

(A) of FIG. 32 illustrates an example in which data stored
in an HDDa searched by the HDD search thread includes the
start time Ts and does not include the end time Te. In this case,
the address at which an item of data corresponding to the start
time T’ is stored is determined to be the start address START,
and the address at which the final item of data is stored is
determined to be the end address END.

(B) of FIG. 32 illustrates an example in which data stored
in an HDDb searched by the HDD search thread does not
include the start time T's and includes the end time Te. In this

25

30

40

45

34
case, the address at which the first item of data is stored is
determined to be the start address START, and the address at
which an item of data corresponding to the end time Te is
stored is determined to be the end address END.

As discussed with reference to FIG. 24, if items of data are
sequentially written into a plurality of HDDs, while HDDs
are being switched, data is written into the two HDDs at the
same time. For example, in FIG. 32, during a time for which
data is written into the HDDa and HDDb at the same time, the
HDDa is being switched to the HDDb.

(C) of FIG. 32 illustrates an example in which data stored
in an HDDc searched by the HDD search thread includes
neither of the start time Ts nor the end time Te and is disposed
between the start time Ts and the end time Te. In this case, the
address at which the first item of data is stored is determined
to be the start address START, and the address at which the
final item of data is stored is determined to be the end address
END.

(D) of FIG. 32 illustrates an example in which data stored
in an HDDd searched by the HDD search thread includes both
of the start time Ts and the end time Te. In this case, the
address at which an item of data corresponding to the start
time T’ is stored is determined to be the start address START,
and the address at which an item of data corresponding to the
end time Te is stored is determined to be the end address END.

FIG. 33 illustrates an example of the start address search
routine started in step S710 of FIG. 31. The start address
search routine is started from the HDD search thread and is
executed for each HDD by the CPU of an associated moth-
erboard MB. The start address search routine calculates, for
example, the start address START illustrated in FIG. 32.

In step S712, the start address search routine stores the
head address of an HDD in a variable LOWER. Then, in step
S714, the start address search routine stores the tail address of
the HDD in a variable UPPER.

Then, in step S800, the start address search routine starts a
time stamp read routine and reads a time stamp, which is a
time at which the first item of data stored in the HDD was
captured, by using the variable LOWER as a parameter. In the
following description, a code TMS indicates a time stamp or
a value of the time stamp (that is, the time at which data was
captured).

Then, in step S716, the start address search routine deter-
mines whether the time indicated by the time stamp TMS is
later than the start time Ts included in the search key KEY. If
the time indicated by the time stamp TMS is later than the start
time Ts (TMS>Ts), the process proceeds to step S718. For
example, in the case of (B) and (C) of FIG. 32, step S718 is
executed. If the time indicated by the time stamp TMS is
equal to or earlier than the start time Ts, the process proceeds
to step S830. For example, in the case of (A) and (D) of FIG.
32, step S830 is executed.

In step S718, the start address search routine sets the head
address of the HDD to be the start address START, as indi-
cated in (B) and (C) of FIG. 32. If, as indicated in (A) and (D)
of FIG. 32, data corresponding to the start time T’ is stored in
the midpoint of the storage area of the HDD, the start address
search routine starts a start address detect routine in step S830
s0 as to determine the start address START by using a binary
search algorithm.

FIG. 34 illustrates an example of the end address search
routine started in step S740 of FIG. 31. The end address
search routine is started from the HDD search thread and is
executed for each HDD to be searched by the CPU of an
associated motherboard MB. The end address search routine
calculates, for example, the end address END illustrated in
FIG. 32.



US 9,292,229 B2

35

In step S742, the end address search routine stores the head
address of an HDD in a variable LOWER. Then, in step S744,
the end address search routine stores the tail address of the
HDD in a variable UPPER.

Then, in step S800, the end address search routine starts the
time stamp read routine and reads a time stamp TMS, which
is a time at which the final item of data stored in the HDD was
captured, by using the variable UPPER as a parameter.

Then, in step S746, the end address search routine deter-
mines whether the time indicated by the time stamp TMS is
earlier than the end time Te included in the search key KEY.
Ifthe time indicated by the time stamp TMS is earlier than the
end time Te (TMS<Te), the process proceeds to step S748.
For example, in the case of (A) and (C) of FIG. 32, step S748
is executed. If the time indicated by the time stamp TMS is
equal to or later than the end time Te, the process proceeds to
step S860. For example, in the case of (B) and (D) of FIG. 32,
step S860 is executed.

In step S748, the end address search routine sets the tail
address of the HDD to be the end address END, as indicated
in (A) and (C) of FIG. 32. If| as indicated in (B) and (D) of
FIG. 32, data corresponding to the end time Te is stored in the
midpoint of the storage area of the HDD, the end address
search routine starts an end address detect routine in step
S860 so as to determine the end address END by using a
binary search algorithm.

FIG. 35 illustrates an example of the start address detect
routine started in step S830 of FIG. 33. The start address
detect routine is executed for each HDD to be searched by the
CPU of an associated motherboard MB. In the start address
detect routine, the start address START positioned in the
midpoint of a storage area of the HDD ((A) and (D) of FIG.
32) is detected by using the binary search algorithm.

In step S832, the start address detect routine sets an inter-
mediate address that is half the head address (LOWER) and
the tail address (UPPER) of an HDD to be a variable CEN-
TER. In the following description, the value set as the variable
CENTER may also be referred to as the “center address
CENTER”.

Then, in step S800, the start address detect routine starts the
time stamp read routine and reads a time stamp, which is a
time at which an item of data stored in the storage area of the
HDD at the center address CENTER was captured. The start
address detect routine then sets the value of the read time
stamp to be the variable TMS.

Then, in step S836, the start address detect routine deter-
mines whether the time indicated by the time stamp TMS is
the same as the start time T's. If the time indicated by the time
stamp TMS is the same as the start time Ts, it means that the
start address START has been detected, and thus, the process
proceeds to step S848. Ifthe time indicated by the time stamp
TMS is not the same as the start time T's, the process proceeds
to step S838 in order to detect the start address START.

In step S838, the start address detect routine determines
whether the time indicated by the time stamp TMS is later
than the start time Ts. If the time indicated by the time stamp
TMS is later than the start time Ts (TMS>Ts), it means that
the start address START is positioned closer to the head
address LOWER than the center address CENTER, and thus,
the process proceeds to step S840. [f the time indicated by the
time stamp TMS is earlier than the start time Ts, it means that
the start address START is positioned closer to the tail address
UPPER than the center address CENTER, and thus, the pro-
cess proceeds to step S842.

In step S840, in order to search for the storage area of the
HDD corresponding to address values smaller than the center
address CENTER, the start address detect routine sets the

40

45

55

36

center address CENTER to be a new tail address UPPER, and
shifts the process to step S844. In step S842, in order to search
for the storage area of the HDD corresponding to address
values larger than the center address CENTER, the start
address detect routine sets the center address CENTER to be
a new head address LOWER, and shifts the process to step
S844.

In step S844, the start address detect routine determines
whether the area to be searched for has become smaller than
the size of a data unit illustrated in FIG. 19. For example, the
start address detect routine compares the difference between
the current tail address UPPER and the current head address
LOWER with the size of the data unit. The size of the data unit
is the sum of the maximum data size, the size of the time
stamp, and the size of the separator. If the area to be searched
for has become smaller than the size of the data unit, the start
address detect routine terminates the binary search algorithm
and shifts the process to step S846. If the area to be searched
for is equal to or larger than the size of the data unit, the
process returns to step S832, and a new area obtained by
setting an intermediate address that is half the head address
(LOWER) and the tail address (UPPER) is searched for.

In step S846, the start address detect routine sets the current
head address LOWER to be the start address START and
terminates the processing. In step S848, the start address
detect routine sets the current center address CENTER to be
the start address START and terminates the processing.

FIG. 36 illustrates an example of the end address detect
routine started in step S860 of FIG. 34. The end address detect
routine is executed for each HDD to be searched by the CPU
of an associated motherboard MB. In the end address detect
routine, the end address END positioned in the midpoint of a
storage area of the HDD ((B) and (D) of FIG. 32) is detected
by using the binary search algorithm.

In step S862, the end address detect routine sets an inter-
mediate address that is half the head address (LOWER) and
the tail address (UPPER) of an HDD to be a variable CEN-
TER. Then, in step S800, the end address detect routine starts
the time stamp read routine and reads a time stamp, which is
atime at which an item of data stored in the storage area of the
HDD at the center address CENTER was captured. The end
address detect routine then sets the value of the read time
stamp to be the variable TMS.

Then, in step S866, the end address detect routine deter-
mines whether the time indicated by the time stamp TMS is
the same as the end time Te. If the time indicated by the time
stamp TMS is the same as the end time Te, it means that the
end address END has been detected, and thus, the process
proceeds to step S878. Ifthe time indicated by the time stamp
TMS is not the same as the end time Te, the process proceeds
to step S868 in order to detect the end address END.

In step S868, the end address detect routine determines
whether the time indicated by the time stamp TMS is later
than the end time Te. If the time indicated by the time stamp
TMS is later than the end time Te (TMS>Te), it means that the
end address END is positioned closer to the head address
LOWER than the center address CENTER, and thus, the
process proceeds to step S870. If the time indicated by the
time stamp TMS is earlier than the end time Te, it means that
the end address END is positioned closer to the tail address
UPPER than the center address CENTER, and thus, the pro-
cess proceeds to step S872.

In step S870, in order to search for the storage area of the
HDD corresponding to address values smaller than the center
address CENTER, the end address detect routine sets the
center address CENTER to be a new tail address UPPER, and
shifts the process to step S874. In step S872, in order to search



US 9,292,229 B2

37

for the storage area of the HDD corresponding to address
values larger than the center address CENTER, the end
address detect routine sets the center address CENTER to be
a new head address LOWER, and shifts the process to step
S874.

In step S874, as in step S844 of FIG. 35, the end address
detect routine determines whether the area to be searched for
has become smaller than the size of a data unit illustrated in
FIG.19.Ifthe area to be searched for has become smaller than
the size of the data unit, the end address detect routine termi-
nates the binary search algorithm and shifts the process to step
S876. If the area to be searched for is equal to or larger than
the size of the data unit, the process returns to step S862, and
anew area obtained by setting an intermediate address that is
half'the head address (LOWER) and the tail address (UPPER)
is searched for.

In step S876, the end address detect routine sets the current
tail address UPPER to be the end address END and terminates
the processing. In step S878, the end address detect routine
sets the current center address CENTER to be the end address
END and terminates the processing.

FIG. 37 illustrates an example of the time stamp read
routine started in step S800 illustrated in FIGS. 33, 34, 35, and
36. The time stamp read routine is executed for each HDD to
be searched by the CPU of an associated motherboard MB.

In step S802, the time stamp read routine sets the size of the
data unit illustrated in FIG. 19 to be a variable RSIZE. In the
following description, the size of the data unit may also be
referred to as the “size RSIZE”. The size RSIZE is the sum of
the maximum data size, the size of the time stamp, and the
size of the separator illustrated in FIG. 19.

Then, in step S804, the time stamp read routine stores the
head address of the HDD in the variable LOWER. If the time
stamp read routine is able to refer to the variable LOWER in
step S712 of FIG. 33 and step S742 of FIG. 34, step S804 may
be omitted.

Then, in step S806, the time stamp read routine determines
whether the address obtained by subtracting the size RSIZE
from an argument ADDR of the start address search routine or
the end address search routine is smaller than the variable
LOWER (head address).

For example, the argument ADDR indicates the head
address of the HDD in the start address search routine and
indicates the tail address of the HDD in the end address search
routine. The argument ADDR also indicates an address posi-
tioned in a midpoint of a storage area of the HDD in the start
address detect routine or the end address detect routine.

If the address obtained by subtracting the size RSIZE from
the argument ADDR is smaller than the head address, the
process proceeds to step S808. If the address obtained by
subtracting the size RSIZE from the argument ADDR is not
smaller than the head address, the process proceeds to step
S810.

In step S808, the time stamp read routine reads data for an
amount of the size RSIZE from the variable LOWER (head
address) and shifts the process to step S812. In step S810, the
time stamp read routine reads data for an amount of the size
RSIZE from the address obtained by subtracting the size
RSIZE from the argument ADDR, and shifts the process to
step S812.

In step S812, the time stamp read routine searches for the
read data from the head so as to detect the separator. Then, in
step S814, the time stamp read routine reads the time stamp
positioned immediately after the detected separator. Then, in
step S816, the time stamp read routine sets the value of the
read time stamp to be the variable TMS, and returns to the
calling routine.

10

15

20

25

30

35

40

45

50

55

60

65

38

FIG. 38 illustrates an example of a sequence of a checking
operation performed by the information processing system
SYS illustrated in FIG. 5. That is, FIG. 38 illustrates an
example of a sequence concerning the information process-
ing system SYS which operates as a check device for data-
capturing HDDs. In the following description, the operation
performed by the control device 400 illustrated in FIG. 7
includes an operation performed by the CPU4 of the control
device 400, and the operation performed by the motherboards
MBs includes an operation performed by the CPUs of the
motherboards MBs.

The checking operation is performed by operating a plu-
rality of motherboards MBs as check servers for checking
data-capturing HDDs. However, for the sake of simple rep-
resentation, in FIG. 38, a checking operation performed by
only one motherboard MBm (m is a positive integer) is illus-
trated.

After the control process is started, the check thread is
started by the control process without receiving a check
request from an external source ((a) of FIG. 38). The check
thread outputs control information for connecting an unused
motherboard MBm within the motherboard pool 100 illus-
trated in FIG. 5 and unused startup HDDn (n is a positive
integer) within the storage drive pool 200 to the connecting
device 300. The connecting device 300 then connects the
motherboard MBm and the HDDn on the basis of the control
information. After the motherboard MBm and the HDDn
have been connected to each other, the check thread installs an
OS and a check program CHKP into the HDDn through the
use of the motherboard MBm. Installation may be performed
by transferring data from the storage device BT illustrated in
FIG. 5 by using a remote installation method, such as a
kickstart installation method.

After installing the OS and the check program CHKP into
the HDDn, the motherboard MBm is restarted. The CPU of
the motherboard MBm executes the OS and starts to access
the HDDn. The motherboard MBm also sends an installation
completion response indicating that installation has been
completed to the check thread ((b) of FIG. 38).

Upon receiving an installation completion response, the
check thread outputs control information for connecting, for
example, the HDD1 through HDD4, which are not perform-
ing a capture operation, to the motherboard MBm to the
connecting device 300 ((c) of FIG. 38). The connecting
device 300 connects the HDD1 through HDD4 to the moth-
erboard MBm on the basis of the control information.

In the example illustrated in FIGS. 38 through 55, data is
redundantly written into a pair of HDDs. For example, data is
redundantly written into the HDD1 and HDD2, and data is
redundantly written into the HDD3 and HDD4. That is, the
information processing system SYS functions as a RAID1
which performs data mirroring.

Then, the check thread outputs an instruction to start the
check process to the motherboard MBm. The motherboard
MBm starts the check process in response to this instruction
((d) of FIG. 38). The check process starts to check the HDD1
through HDD4, and upon completing checking of the HDD1
through HDD4, the check process sends check results to the
check thread ((e) of FIG. 38).

Upon completing checking of the HDD1 through HDD4,
the check thread outputs control information for disconnect-
ing the HDD1 through HDD4 from the motherboard MBm to
the connecting device 300 ((f) of FIG. 38). The connecting
device 300 disconnects the HDD1 through HDD4 from the
motherboard MBm on the basis of the control information.

Then, the check thread outputs control information for
connecting the HDD5 through HDD8, which are not perform-



US 9,292,229 B2

39

ing a capturing operation, to the motherboard MBm to the
connecting device 300 ((g) of FIG. 38). The connecting
device 300 connects the HDDS5 through HDDS to the moth-
erboard MBm on the basis of the control information.

Then, the check thread outputs an instruction to start the
check process to the motherboard MBm. The motherboard
MBm starts the check process in response to this instruction
((h) of FIG. 38). The check process starts to check the HDD5
through HDDS, as in the HDD1 through HDD4, and upon
completing checking of the HDD5 through HDDS, the check
process sends check results to the check thread. Thereafter,
HDDs which are not performing a capturing operation are
sequentially checked.

FIG. 39 illustrates examples of the states of the tables TBLs
when the check process illustrated in FIG. 38 is started. The
tables MBTBL and HDDTBL illustrated in FIG. 8 have not
changed, and thus, an illustration of these tables is omitted in
FIG. 39. In this example, the motherboard MBm and HDDn
illustrated in FIG. 38 is the motherboard MB3 and the
HDD31, respectively. In FIG. 39, shaded areas are portions
which have been set before the check thread starts the check
process.

As illustrated in FIG. 38, before starting the check process,
the check thread connects the motherboard MB3 and the
HDD31 and installs the check program CHKP into the moth-
erboard MB3. Accordingly, the check thread adds informa-
tion indicating the connection between the motherboard MB3
and the HDD31 to the table CNTBL. The check thread also
sets the state of the motherboard MB3 in the table MSTBL to
“checking” and sets the state of the HDD31 in the table
HSTBL to “started”.

In the table HSTBL, the arrows with “mirror” indicate that
two HDDs are retaining the same data. That is, by performing
data mirroring on two HDDs, even if one HDD fails,
destroyed data in the failed HDD is possible to restore by
using data stored in the other HDD.

FIG. 40 illustrates an example of the states of the tables
TBLs when the check process illustrated in FIG. 38 is being
executed. In FIG. 40, shaded areas are portions of the tables
TBLs in which the states have changed from the states illus-
trated in FIG. 39. The tables MBTBL and HDDTBL illus-
trated in FIG. 8 have not changed, and thus, an illustration of
these tables is omitted in FI1G. 40.

The check thread connects the motherboard MB3, which
executes the check program CHKP, and HDDs (in this
example, HDD1, HDD2, HDD3, and HDD4) and checks the
HDDs. Accordingly, the check thread adds information indi-
cating the connection between the motherboard MB3 and the
HDD1 through HDD4 to the table CNTBL, and sets the states
of the HDD1 through HDDA4 in the table HSTBL to “check-
ing”. The check thread also stores HDD1 through HDD4 as
HDDNo and time t33, t34, t35, and t36 at which checking of
the HDD1 through HDD4, respectively, started in the table
CHKTBL. The other states of the tables TBLs are the same as
those illustrated in FIG. 39.

In this embodiment, for example, the data capturing opera-
tion is performed by the motherboards MB1 and MB2, and
the data checking operation is performed by the motherboard
MB3, which is different from the motherboards MB1 and
MB2. Accordingly, as in the embodiment illustrated in FIGS.
1 through 4C, the motherboards MB1 and MB2, which are
preforming a data capturing operation, are able to stably write
data which demands a high throughput, such as voice data,
into HDDs, without being influenced by the checking of
HDDs. Meanwhile, the motherboard MB3 is able to concen-
trate on a checking operation without being influenced by
interrupt of a data capturing operation performed in real time.

20

40

45

55

40

FIG. 41 illustrates an example of the check thread started in
step S400 illustrated in FIG. 16. The check thread is imple-
mented by executing the control program by the CPU4 of the
control device 400.

In step S402, the check thread sets the number of mother-
boards MBs which will operate as check servers to be a
variable N and sets the number of HDDs to be checked by
each motherboard MB to be a variable M. The values to be set
to be N and M are determined by the control process in
advance, or are provided by the console CNSL together with
a capture start instruction illustrated in FIG. 9.

Then, in step S404, the check thread initializes the table
CHKTBL to be “null”, as illustrated in FIG. 39. Then, in step
S406, the check thread determines whether M motherboards
MBs have been selected. If M motherboards MBs have been
selected, the process proceeds to step S416. If not all M
motherboards MBs have been selected, the process proceeds
to step S408.

In step S408, the check thread refers to the table MSTBL
and selects one unused motherboard MB. Then, in step S410,
the check thread refers to the table HSTBL and selects one
unused startup HDD.

Then, in step S412, the check thread controls the connect-
ing device 300 so that the selected motherboard MB and the
selected startup HDD may be connected to each other. Then,
in step S414, the check thread updates the tables CNTBL,
MSTBL, and HSTBL. Examples of the updated tables TBLs
are illustrated in FIG. 39. The check thread repeats steps S408
through S414 until all the motherboards MBs that will per-
form a checking operation have been selected.

If it is found in step S406 that all the motherboards MBs
have been selected, the check thread installs the OS and the
check program CHKP into each of the M motherboards MBs
in steps S416 through S424. More specifically, in step S416,
the check thread determines whether the selected M mother-
boards MBs have been initialized. If the selected M mother-
boards MBs have been initialized, the process proceeds to
step S424. If not all the selected M motherboards MBs have
been initialized, the process proceeds to step S418. Steps
S418, S420, S422, and S424 are similar to steps S216, S218,
S220, and S222, respectively, illustrated in FIG. 17, except
that the program to be installed is different, and thus, an
explanation thereof will be omitted.

In step S430, the check thread starts an HDD select routine
for selecting an HDD to be checked. In step S450, the check
thread starts a check process start routine for starting a check
process. In step S470, the check thread starts a check result
receive routine for receiving check results. An example of the
HDD select routine is illustrated in FIG. 42. An example of
the check process start routine is illustrated in FIG. 43. An
example of the check result receive routine is illustrated in
FIG. 44.

Then, in step S426, the check thread determines whether
information indicating the occurrence of an error in an HDD
is included in the check results received from the check pro-
cess. If information indicating the occurrence of an error is
included in the check results, the process proceeds to step
S900. If information indicating the occurrence of an error is
not included in the check results, the process returns to step
S430, and the check thread checks the next HDD. An error
occurring in an HDD is a failure in the HDD or a correctable
error occurring in a storage area of the HDD.

In step S900, the check thread starts a copy process routine
for recovering from an error, and then returns the process to
step S430. An example of the copy process routine is illus-
trated in FIGS. 52, 53, and 54.



US 9,292,229 B2

41

FIG. 42 illustrates an example of the HDD select routine
called by step S430 of FIG. 41. The HDD select routine is
executed by the CPU4 of the control device 400.

In step S432, as in step S402 of FIG. 41, the HDD select
routine sets the number of motherboards MBs which have
been started as check servers to be a variable N and sets the
number of HDDs to be checked by each motherboard MB to
be a variable M.

Then, in step S434, the HDD select routine initializes a list
HDDLIST1 to be “null”. In the list HDDLIST1, information
concerning HDDs to be checked (for example, HDD num-
bers) is stored.

Then, in step S436, the HDD select routine determines
whether HDDs which may be simultaneously checked are
stored in the list HDDLIST1. The number of HDDs which
may be simultaneously checked is represented by, for
example, the product of the number N of started mother-
boards MBs and the number M of HDDs to be checked by
each of the motherboards MBs. If all the HDDs to be checked
are stored in the list HDDLIST1, the processing is terminated.
If not all the HDDs to be checked are stored in the list
HDDLIST1, the process proceeds to step S438.

In step S438, the HDD select routine selects a standby
HDD which has not been checked for the longest time. Then,
in step S440, the HDD select routine overwrites the list
HDDLIST1 so as to add the HDD selected in step S438 to the
list HDDLIST1. Then, in step S442, the HDD select routine
updates the table CHKTBL illustrated in FIG. 7 and returns
the process to step S436.

FIG. 43 illustrates an example of a check process start
routine called by step S450 of FIG. 41. The check process
start routine is executed by the CPU4 of the control device
400.

In step S452, the check process start routine determines
whether check processes of N motherboards MBs have been
started. If check processes of N motherboards MBs have been
started, the processing is terminated. If not all check pro-
cesses of N motherboards MBs have not been started, the
process proceeds to step S454.

In step S454, the check process start routine selects one of
motherboards MBs which have not been started. Then, in step
S456, the check process start routine extracts items of infor-
mation concerning M HDDs from among items of informa-
tion stored in the list HDDLIST1.

Then, in step S458, the check process start routine connects
the selected motherboard MB and M HDDs extracted from
the list HDDLIST1. Then, in step S460, the check process
start routine updates the tables CNTBL, HSTBL, and CHK-
TBL. Examples of the updated tables TBLs are illustrated in
FIG. 40. Then, in step S1000, the check process start routine
starts the check process of the motherboard MB selected in
step S454, and returns the process to step S452. An example
of the check process is illustrated in FIG. 45.

FIG. 44 illustrates an example of the check result receive
routine called by step S470 of FIG. 41. The check result
receive routine is executed by the CPU4 of the control device
400.

In step S472, the check result receive routine initializes a
list RSLTLIST4 to be “null”. In the list RLSTLIST4, for
example, check results or addresses of storage areas in which
check results are stored are stored.

Then, in step S474, the check result receive routine deter-
mines whether check results have been received from all the
motherboards MBs which are operating as check servers. If
check results have been received, the processing is termi-
nated. If check results have not been received from all the
motherboards MBs, the process proceeds to step S476.

20

25

30

40

45

42

In step S476, the check result receive routine determines
whether check results of M HDDs have been received from
one of the motherboards MBs operating as check servers. If
check results have been received, the process proceeds to step
S478. If check results have not been received, the process
returns to step S474. That is, in step S476, the check result
receive routine waits until check results have been received.

In step S478, the check result receive routine adds check
results in the list RSLTIST4. Then, in step S480, the check
result receive routine controls the connecting device 300 so
that the M HDDs may be disconnected from the motherboard
MB which has output the check results.

Then, in step S482, the check result receive routine updates
the tables CNTBL and HSTBL so as to reflect the discon-
nected HDDs in the tables, and then returns to step S474.

FIG. 45 illustrates an example of the check process start
routine started in step S1000 of FIG. 43.

In step S1002, the check process receives HDD numbers to
be checked from the check thread through, for example, a
command line, and registers the received HDD numbers in a
list HDDLIST?2. The check process also initializes a check list
CHKLIST in which check results are stored to be “null”.

Then, in step S1004, the check process waits until HDDs to
be checked are connected to the motherboard MB. Then, in
step S1006, the check process determines whether the HDDs
connected to the motherboard MB are accessible. If the
HDDs are accessible, it means that a failure has not occurred
in the HDDs, and the process proceeds to step S1012. If an
access error has occurred, it means that a failure has occurred
in an HDD, and thus, the process proceeds to step S1008. An
access error is recognized, for example, when an error has
occurred during at least one of write access and read access
into and from a plurality of storage areas of an HDD.

In step S1008, the check process registers the failed HDD
number in the check list CHKLIST. Then, in step S1010, the
check process deletes the failed HDD number from the list
HDDLIST? received from the check thread.

In step S1012, the check process determines whether there
is any HDD which has not been checked. If there is any HDD
which has not been checked, the process proceeds to step
S1014. If all the HDDs have been checked, the process pro-
ceeds to step S1022.

In step S1014, the check process selects an HDD which has
not been checked. Then, in step S1016, the check process
accesses the HDD and reads check results concerning bad
blocks. The bad block is a block, which forms a storage area
of'an HDD, in which an error has occurred during data read-
ing or data writing. The bad block may be disabled by replac-
ing it by another block, thereby making it possible to correct
an error. Bad blocks may be checked for by using, for
example, a media check function of an HDD.

Then, in step S1018, the check process determines, on the
basis of check results concerning bad blocks, whether there is
a bad block. If there is a bad block, the process proceeds to
step S1020. Ifthere is no bad block, the process returns to step
S1012. In step S1020, the check process registers, together
with the HDD number, the detected bad block and the address
of'the bad block in the check list CHKLIST. The process then
returns to step S1012.

If it is found in step S1012 that all the HDDs have been
checked, the process proceeds to step S1022. In step S1022,
the check process sends the content of the check list
CHKLIST to the check thread executed by the controller 400.
The check process is then terminated.

FIG. 46 illustrates an example of a sequence of a copy
operation executed by the information processing system
SYS illustrated in FIG. 5. That is, FIG. 46 illustrates an



US 9,292,229 B2

43

example of a sequence concerning the information process-
ing system SY'S which operates as a copying device for HDD
data. The sequence of a copy operation is executed when a
failure of an HDD has been detected or when a bad block of
an HDD has been detected in the check thread illustrated in
FIG. 41. In the following description, the operation per-
formed by the control device 400 illustrated in FIG. 7 includes
an operation performed by the CPU4 of the control device
400, and the operation performed by the motherboards MBs
includes an operation performed by the CPUs of the mother-
boards MBs.

The copy operation is performed by operating a plurality of
motherboards MBs as copy servers for copying data into
HDDs. However, for the sake of simple representation, in
FIG. 46, a copy operation performed by only one mother-
board MBm (m is a positive integer) is illustrated.

As in FIG. 38, the check thread controls the connecting
device 300 so that the motherboard MBm and the HDDn may
be connected to each other. After the motherboard MBm and
the HDDn have been connected, as in FIG. 38, the check
thread installs an OS and a program, such as a copy program
CPYP, into the HDDn through the use of the motherboard
MBm ((a) of FIG. 46).

After installing the OS and the copy program CPYP into
the HDDn, the check thread restarts the motherboard MBm.
The CPU of the motherboard MBm executes the OS and starts
to access the HDDn. The motherboard MBm also sends an
installation completion response indicating that installation
has been completed to the check thread ((b) of FIG. 46).

Upon receiving an installation completion response, the
check thread controls the connecting device 300 so that the
motherboard MBm may be connected to an HDD (for
example, HDD1) which forms a mirroring pair with an HDD
in which a failure has occurred and also to an HDDx ((c) of
FIG. 46). The HDDx is an HDD which will replace a failed
HDD or a failed HDD (for example, an HDD which forms a
mirroring pair with HDD1).

Then, the check thread outputs an instruction to start a copy
process to the motherboard MBm. The motherboard MBm
starts the copy process in response to this instruction ((d) of
FIG. 46). The copy process executes processing for copying
data retained in the HDD1 into HDDx. The HDDx is, for
example, a spare unused HDD which may be used when a
failure of an HDD is detected by the check thread. Alterna-
tively, the HDDx is, for example, an HDD having a bad block
detected by the check thread.

After a copy operation has been executed, the copy process
sends a copy completion response indicating that a copy
operation has been completed to the check thread ((e) of FIG.
46). Upon receiving the copy completion response, the check
thread controls the connecting device 300 so that the HDD1
and HDDx may be disconnected from the motherboard MBm
((f) of FIG. 46).

FIG. 47 illustrates an example of the states of the tables
TBLs when the copy process illustrated in FIG. 46 is started.
In FIG. 47, shaded areas are portions which have changed
when the copy process was started. The tables MBTBL and
HDDTBL illustrated in FIG. 8 have not changed, and thus, an
illustration of these tables is omitted in FIG. 47. In the table
HSTBL, the arrows with “mirror” indicate that the same data
is redundantly retained, as in FIG. 39. In this example, the
motherboard MBm illustrated in FIG. 46 is the motherboard
MB4 and the HDDn is the HDD32.

In this example, as illustrated in FIG. 46, before starting the
copy process, the check thread connects the motherboard
MB4 and the HDD32 and installs the copy program CPYP
into the motherboard MB4. Accordingly, the check thread

10

15

20

25

30

35

40

45

50

55

60

65

44

adds information indicating the connection between the
motherboard MB4 and the HDD32 to the table CNTBL. The
check thread also sets the state of the motherboard MB4 inthe
table MSTBL to be “copying” and the state of the HDD32 in
the table HSTBL to “started”.

FIG. 48 illustrates an example of the states of the tables
TBLs when the copy process illustrated in FIG. 46 is being
executed. In FIG. 48, shaded areas are portions of the tables
TBLs in which the states have changed from the states illus-
trated in FIG. 47. The tables MBTBL and HDDTBL illus-
trated in FIG. 8 have not changed, and thus, an illustration of
these tables is omitted in FI1G. 48.

In this example, a failure of the HDD3 is detected by the
check process illustrated in FIG. 38, and data stored in the
HDD1, which forms a mirroring pair with the HDD3, is
copied into the spare HDD25.

The check thread connects the motherboard MB4 that will
execute the copy program CPYP to the HDD1 and HDD25
that performs a copy operation. Accordingly, the check thread
adds information indicating the connection between the
motherboard MB4 and the HDD1 and HDD25 to the table
CNTBL. The check thread also changes the purpose of use of
the HDD25 in the table HSTBL from “spare” to “data cap-
turing” and changes that of the HDD3 from “data capturing”
to “spare”. The check thread also changes the states of the
HDD1 and HDD25 in the table HSTBL to “copying” and the
state of the HDD3 to “failed”.

The check thread also replaces the record (line) of the table
INDTBL in which the HDD?3 is registered by that in which the
HDD25 is registered (the start time and the end time are
initialized to be “null”). The check thread also replaces the
record (line) of the table CHKTBL in which the HDD3 is
registered by that in which the HDD25 is registered (the
check time is initialized to be “null”). The check thread also
registers in the table FAILTBL information indicating a fail-
ure of the HDD3 (HDD {failure). The other states of the tables
TBLs are the same as those of FIG. 47.

FIG. 49 illustrates an example of the states of the tables
TBLs after the copy process illustrated in FIG. 46 has been
executed. In FIG. 49, shaded areas are portions of the tables
TBLs in which the states have changed from the states illus-
trated in FIG. 48. The tables MBTBL and HDDTBL illus-
trated in FIG. 8 have not changed, and thus, an illustration of
these tables is omitted in FIG. 49. In this example, by execut-
ing the copy process, the HDD25 which has replaced the
HDD3 is set to be a state in which it may perform a data
capturing operation.

Upon completing the copy process, the check thread
deletes information indicating the connection between the
motherboard MB4 and the HDD1 and HDD25 from the table
CNTBL, and sets the state of the motherboard MB4 in the
table MSTBL to be “notused”. The check thread also changes
the states of the HDD1 and HDD2S5 in the table HSTBL from
“copying” illustrated in FI1G. 48 to “standby”, and the state of
the HDD32 from “started” illustrated in FIG. 48 to “not
used”. The check thread also changes the check time of the
HDD1 and HDD25 in the table CHKTBL to t37, which is a
time at which the copy operation was finished. The check
thread also sets the start time and the end time of the record
(line) of the table INDTBL in which the HDD25 is registered
to be 125 and t25', which are the same as those of HDD1.

FIG. 50 illustrates another example of the states of the
tables TBLs when the copy process illustrated in FIG. 46 is
being executed. In FIG. 50, shaded areas are portions of the
tables TBLs in which the states have changed from the states
illustrated in FIG. 47. The tables MBTBL and HDDTBL



US 9,292,229 B2

45

illustrated in FIG. 8 have not changed, and thus, an illustration
of these tables is omitted in FIG. 50.

In this example, a bad block of the HDD3 is detected by the
check process illustrated in FIG. 38, and the HDD3 and the
HDD1, which forms a mirroring pair with the HDD3, are
connected to the motherboard MB4. Then, data stored in the
HDD1 is copied into the HDD3, thereby recovering data
stored in the bad block. A detailed explanation of operations
similar to those indicated by the tables TBLs FIG. 48 will be
omitted.

As in FIG. 48, the check process adds information indicat-
ing the connection between the motherboard MB4 and the
HDD1 and HDD3 to the table CNTBL, and sets the states of
the HDD1 and HDD3 in the table HSTBL to be “copying”.
The check thread also registers information (Bad Block) indi-
cating the occurrence of a bad block in the HDD3 in the table
FAILTBL, together with an address “addr” of the bad block.

FIG. 51 illustrates another example of the states of the
tables TBLs after the copy process illustrated in FIG. 46 has
been executed. In FIG. 51, shaded areas are portions of the
tables TBLs in which the states have changed from the states
illustrated in FIG. 50. The tables MBTBL and HDDTBL
illustrated in FIG. 8 have not changed, and thus, an illustration
of these tables is omitted in FIG. 51.

In this example, by executing the copy process, the HDD3,
in which data of a bad block has been recovered from, is set,
together with the HDDI1, to be the standby state in which a
data capturing operation may be performed. Since the HDD3,
which is registered in the table FAILTBL, is restored, the first
line of the table FAILTBL is set to be “null”. A detailed
explanation of operations similar to those indicated by the
tables TBLs FIG. 49 will be omitted.

Upon completing the copy process, the check thread
deletes information indicating the connection between the
motherboard MB4 and the HDD1 and HDD3 from the table
CNTBL, and sets the state of the motherboard MB4 in the
table MSTBL to be “not used”. The check thread also changes
the states of the HDD1 and HDD3 in the table HSTBL from
“copying” illustrated in FIG. 50 to “standby”, and changes the
state of the HDD32 from “started” illustrated in FIG. 50 to
“not used”.

FIG. 52 illustrates an example of the copy process routine
called by step S900 of FIG. 41. The copy process routine is
implemented by executing the control program by the CPU4
of the control device 400.

In step S902, the copy process routine determines whether
a specified number of motherboard MBs have been selected.
If a specified number of motherboards MBs have been
selected, the process proceeds to step S912. If not all the
specified number of motherboards MBs have been selected,
the process proceeds to step S904. The number of mother-
boards MBs may be determined by the control process in
advance, or may be received by the console CNSL, together
with a capture start instruction illustrated in FIG. 9.

Then, in step S904, the copy process routine refers to the
table MSTBL and selects one of unused motherboards MBs.
Then, in step S906, the copy process routine refers to the table
HSTBL and selects an unused startup HDD.

Then, in step S908, the copy process routine controls the
connecting device 300 so that the selected motherboard MB
and the selected startup HDD may be connected to each other.
Then, in step S910, the copy process routine updates the
tables CNTBL, MSTBL, and HSTBL. Examples of the
updated tables TBLs are illustrated in FIG. 47. The copy
process routine then repeats steps S904, S906, S908, and
S910 until all the motherboards MBs which will perform a
copy operation have been selected.

10

15

20

25

30

35

40

45

50

55

60

65

46

If it is found in step S902 that all the motherboards MBs
have been selected, the copy process routine installs the OS
and the copy program CPYP into each of the M motherboards
MBs in steps S912 through S918. Steps S912 through S920
are similar to steps S214 through S222, respectively, illus-
trated in FIG. 17, except that the program to be installed is
different, and thus, an explanation thereof will be omitted.

Then, in step S922, the copy process routine determines
whether the list RSLTLIST4 in which information concern-
ing errors in HDDs is stored indicates “null”. If the list
RSLTLIST4 indicates “null”, it means that there is no HDD in
which an error has occurred, and thus, the copy process rou-
tine is terminated. If the list RSLTLIST4 does not indicate
“null”, it means that there is an HDD in which an error has
occurred, and thus, the process proceeds to step S924.

Then, in step S924, the copy process routine extracts HDD
failure information. In step S926, the copy process routine
determines whether an HDD has failed or whether a bad block
has occurred in an HDD. If an HDD has failed, the process
proceeds to step S930. If a back block has occurred in an
HDD, the process proceeds to step S960.

In step S930, the copy process routine starts an HDD
failure process routine. In step S960, the copy process routine
starts a block recovery process routine. An example of the
HDD f{ailure process routine is illustrated in FIG. 53. An
example of the block recovery process routine is illustrated in
FIG. 54. After step S930 or S960, the process returns to step
S922.

FIG. 53 illustrates an example of the HDD failure process
routine called by step S930 of FIG. 52. The HDD failure
process routine is implemented by executing the control pro-
gram by the CPU4 of the control device 400.

In step S932, the HDD failure process routine refers to the
field of “spare” of the table HSTBL and selects an unused
spare HDD which will replace a failed HDD. Then, in step
S934, the HDD failure process routine updates the table
HSTBL so that the failed HDD number stored in the field of
“data capturing” may be replaced by the spare HDD number
and so that the failed HDD number may be stored in the field
of “spare”. After step S934, the spare HDD and the failed
HDD have been swapped.

Then, in step S936, the HDD failure process routine selects
a mirror HDD which forms a mirroring pair with the failed
HDD. Then, in step S938, the HDD failure process routine
controls the connecting device 300 so that the mirror HDD
and the spare HDD may be connected to the motherboard MB
which will perform a copy operation. Then, in step S940, the
HDD failure process routine updates the table CNTBL so as
to reflect the connection between the motherboard MB and
the HDDs, and sets the states of the HDDs which will be
subjected to a copy process in the table HSTBL to be “copy-
ing”. Examples of the states of the updated table TBLs are
illustrated in FIG. 48.

In step 8990, the HDD {failure process routine starts the
copy process. An example of the copy process is illustrated in
FIG. 55. Then, in step S942, the HDD failure process routine
waits for a copy completion response from the copy process.
Then, in step S944, upon receiving a copy completion
response, the HDD {failure process routine controls the con-
necting device 300 so that the mirror HDD and the spare HDD
may be disconnected from the motherboard MB which has
executed a copy operation.

In step S946, the HDD failure process routine updates the
tables CNTBL, MSTBL, HSTBL, INDTBL, and CHKTBL.
Examples of the updated tables TBLs are illustrated in FIG.
49. The HDD failure process routine is then terminated.



US 9,292,229 B2

47

FIG. 54 illustrates an example of the block recovery pro-
cess routine called by step S960 of FIG. 52. The block recov-
ery process routine is implemented by executing the control
program by the CPU4 of the control device 400.

In step S962, the block recovery process routine selects a
mirror HDD which forms a mirroring pair with an HDD in
which a bad block has been detected. Then, in step S964, the
block recovery process routine controls the control device
300 so that the mirror HDD and the HDD in which a bad block
has been detected may be connected to a motherboard MB
which will execute a copy operation. Then, in step S966, the
block recovery process routine updates the tables CNTBL
and HSTBL. Examples of the updated tables TBL are illus-
trated in FIG. 50.

Then, in step S990, the block recovery process routine
starts the copy process. An example of the copy process is
illustrated in FIG. 55. Then, in step S968, the block recovery
process routine waits for a copy completion response from the
copy process. Then, in step S970, upon receiving a copy
completion response, the block recovery process routine con-
trols the control device 300 so that the mirror HDD and the
HDD in which a bad block has occurred may be disconnected
from the motherboard MB which has executed a copy opera-
tion.

Then, in step S972, the block recovery process routine
updates the tables CNTBL, MSTBL, HSTBL, INDTBL, and
CHKTBL. Examples of the updated tables TBL are illus-
trated in FIG. 51. The block recovery process routine is then
terminated.

FIG. 55 illustrates an example of the copy process started in
step S990 illustrated in FIGS. 53 and 54. The copy process is
implemented by executing the copy program CPYP by the
CPU of the motherboard MB.

In step S992, the copy process waits until HDDs are con-
nected to the motherboard MB in step S938 of FIG. 53 or step
S964 of F1G. 54.

Then, in step S994, the copy process obtains, through, for
example, a command line, the mirror HDD number, which is
a copy source number, the HDD number, which is a copy
destination number, and a copy range within which data will
be copied. The copy destination is a spare HDD or an HDD in
which a bad block has occurred.

Then, in step S996, the copy process executes a copy opera-
tion. Then, in step S998, the copy process sends a copy
completion response indicating that a copy operation has
been completed to the check thread.

Asinthe embodiment illustrated in FIGS. 1 through 4C, by
preforming a data capturing operation while sequentially
switching HDDs which will be connected to the mother-
boards MB1 and MB2, it is possible to stably write data into
selected HDDs without being influenced by the other HDDs.
Since the motherboards MB1 and MB2 do not perform a
search operation or a check operation, they are able to con-
tinuously perform a checking operation, thereby suppressing
a decrease in the data writing rate, which would be caused by
the interrupt of a search operation or a check operation.

The motherboard MB3 which executes a search operation
is operated independently of the motherboard MB1 that
executes a data capturing operation, and thus, it is able to
search for data without being interrupted by the data captur-
ing operation. The motherboard MB4 which executes a check
operation is operated independently of the motherboard MB1
that executes a data capturing operation, and thus, itis able to
check data without being interrupted by the data capturing
operation.

In the data capturing operation, under the control of the
control device 400, when the write address has exceeded the

10

15

20

25

30

35

40

45

50

55

60

65

48

threshold VT1, processing for connecting a new HDD is
started. Thus, a motherboard MB is able to write captured
data into HDDs without causing the loss of data even while
the HDDs are being switched.
Under the control of the control device 400, by interrupting
the supply of power to standby HDDs which retain data
obtained by a data capturing operation, it is possible to store
data in HDDs without causing the loss of data while imple-
menting a reduction in the power consumption. By interrupt-
ing the supply of power to motherboards MBs and HDDs
which do not perform a search operation or a check operation,
it is possible to reduce the power consumption of the infor-
mation processing system SY'S, unlike a case in which power
is supplied to such MBs and HDDs. Even in this case, HDDs
to which the supply of power is cut still retain an OS and a
program therein, and thus, it is possible to execute a search
operation or a check operation by restarting an associated
motherboard MB.
All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader in under-
standing the invention and the concepts contributed by the
inventor to furthering the art, and are to be construed as being
without limitation to such specifically recited examples and
conditions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe-
riority of the invention. Although the embodiments of the
present invention have been described in detail, it should be
understood that the various changes, substitutions, and alter-
ations could be made hereto without departing from the spirit
and scope of the invention.
What is claimed is:
1. An information processing system comprising:
a plurality of processors;
a plurality of memory devices;
a connecting device that connects each of the plurality of
processors to at least one of the plurality of memory
devices; and
a control device that controls the plurality of processors
and the connecting device, wherein
a first processor, among the plurality of processors, is con-
figured to:
write data into a first memory device, among the plural-
ity of memory devices, and

transmit a connection request for requesting the control
device to connect a second memory, among the plu-
rality of memory devices, with the first processor
when it is determined that an amount of data stored in
the first memory device exceeds a predetermined
threshold,

the control device is configured to control the connecting
device to connect the second memory device with the
first processor when the connection request is received,

the first processor is configured transmit a disconnection
request for requesting the control device to disconnect a
connection between the first memory device and the first
processor when the first processor starts writing data
into the second memory device,

the control device is configured to control the connecting
device to disconnect the connection between the first
memory device and the first processor when the discon-
nection

request is received, and

the controller device is configured to select a memory
device, from among the plurality of memory devices, in
which an oldest data is stored, when the connection
request is received and it is determined that an unused
memory device in which data are not stored does not



US 9,292,229 B2

49

exist in the plurality of memory devices and to connect
the first processor with the selected memory device.

2. The information processing system according to claim 1,
wherein

the control device causes the first memory device to per-

form an installation of a program for executing writing
data into the first memory device before starting writing
data into the first memory device by the first processor;
and

the first processor transmits an installation completion

response indicating that the installation of the program
has been completed to the control device when the
installation of the program has been completed.

3. The information processing system according to, claim
1, wherein the control device is configured to:

receive a search request for searching data stored in one of

the plurality of memory devices, the search request
including time information indicating a time when the
data to be searched was generated;

specity a third memory device which stores information

corresponding to the time information from among the
plurality of memory devices; and

control the connecting device to connect the third memory

device with a second processor among the plurality of
processors while maintaining a connection between the
first processor and the second memory device,

the second processor is configured to:

search for data stored in the third memory device; and
inform the control device of a search result related to the
data stored in the third memory device, and

the control device is configured to control the connecting

device to disconnect the connection between the third
memory device and the second processor.

4. The information processing system according to claim 3,
wherein

the control device includes a storage device configured to

store information corresponding to the time informa-
tion; and

the control device is configured to specity the third

memory device by referring to the information stored in
the storage device.

5. The information processing system according to claim 3,
wherein the control device is configured to:

control the connecting device to connect the third memory

device with the first processor, when it is determined that
the second memory device stores information corre-
sponding to the time information while maintaining the
connection between first processor and the second
memory device; and

control the connecting device to disconnect the connection

between the first processor and the second memory
device.

6. The information processing system according to claim 3,
wherein the control device causes the third memory device to
perform an installation of a program for searching data stored
in the third memory device before starting searching of the
data stored in the third memory device by the second proces-
sor.

7. The information processing system according to claim 1,
wherein:

the first processor redundantly writes data into a plurality

of the first memory devices;

the control device controls the connecting device so that a

fourth memory device, which is one of the plurality of
first memory devices in which data is redundantly stored

10

20

35

40

[
<

50

and which is not connected to the first processor, will be
connected to a third processor, which is one of the plu-
rality of processors;

the third processor checks the fourth memory device and

informs the control device of a check result; and
when the check result indicates a failure in the fourth
memory device, the control device controls the connect-
ing device so that a fifth memory device, which is one of
the plurality of memory devices, will be connected to the
third processor, copies data which is redundantly stored
in a sixth memory device as in the fourth memory device
into the fifth memory device, and changes the allocation
of the failed fourth memory device to the first processor
to the allocation of the fifth memory device to the first
processor.
8. The information processing system according to claim 7,
wherein, when the check result indicates a correctable error,
the data stored in the sixth memory device is copied into the
fourth memory device in which an error has occurred.
9. The information processing system according to claim 7,
wherein the control device performs checking by sequentially
switching the memory devices to be connected to the third
processor.
10. The information processing system according to claim
7, wherein, before checking one of the plurality of first
memory devices, the control device connects one of the plu-
rality of memory devices to the third processor and installs a
program for checking the first memory device into the
memory device connected to the third processor.
11. A control method for a control device which connects,
via a connecting device, each of a plurality of processors that
each executes processing to at least one of a plurality of
memory devices that each stores data, the control method
comprising:
controlling the connecting device to connect a second
memory device among the plurality of memory devices
with a first processor among the plurality of processors,
when it is determined that an amount of data stored in a
first memory device among the plurality of memory
devices exceeded a predetermined threshold;

controlling the connecting device to disconnect a connec-
tion between the first memory device and the first pro-
cessor when the first processor starts writing data into
the second memory device; and

selecting, by the controller device, a memory device in

which an oldest data is stored as the second memory
device, when a connection request is received and it is
determined that an unused memory device in which data
are not stored does not exist in the plurality of memory
devices.

12. A control method for an information processing system
which includes a plurality of processors, a plurality of
memory devices, a connecting device that connects each of
the plurality of processors to at least one of the plurality of
memory devices, and a control device that controls the plu-
rality of processors and the connecting device, the control
method comprising:

writing, by a first processor among the plurality of proces-

sors, data into a first memory device among the plurality
of memory devices;

transmitting a connection request for requesting the control

device to connect a second memory among the plurality
of memory devices with the first processor when it is
determined that an amount of data stored in the first
memory device exceeded a predetermined threshold;



US 9,292,229 B2

51

controlling, by the control device, the connecting device to
connect the second memory device with the first proces-
sor when the connection request is received;

transmitting, by the first processor, a disconnect request for
requesting the control device to disconnect a connection
between the first memory device and the first processor
when the first processor starts writing data into the sec-
ond memory device;

controlling, by the control device, the connecting device to
disconnect the connection between the first memory
device and the first processor when the disconnection
request is received; and

selecting, by the controller device, a memory device in
which an oldest data is stored as the second memory
device, when a connection request is received and it is
determined that an unused memory device in which data
are not stored does not exist in the plurality of memory
devices.

13. The control method according to claim 12, further

comprising:

causing, by the control device, the first memory device to
perform an installation of a program for executing writ-
ing data into the first memory device before starting
writing data into the first memory device by the first
processor; and

transmitting, by the first processor, an installation comple-
tion response indicating that the installation of the pro-
gram has been completed to the control device when the
installation of the program has been completed.

14. The control method according to claim 12, further

comprising:

receiving, by the control device, a search request for
searching data stored in one of the plurality of memory
devices, the search request including time information
indicating a time when the data to be searched was
generated;

specitying a third memory device which stores information
corresponding to the time information from among the
plurality of memory devices;

controlling the connecting device to connect the third
memory device with a second processor among the plu-
rality of processors while maintaining a connection
between the first processor and the second memory
device;

searching, by the second processor, for data stored in the
third memory device;

informing the control device of a search result related to the
data stored in the third memory device, and

15

20

25

30

35

40

45

52

controlling, by the control device, the connecting device to
disconnect the connection between the third memory
device and the second processor.

15. The control method according to claim 14, wherein:

the control device includes a storage device configured to
store information corresponding to the time informa-
tion; and

the specifying includes specifying the third memory device
by referring to the information stored in the storage
device.

16. The control method according to claim 14, further

comprising:

controlling, by the control device, connecting device to
connect the third memory device with the first processor,
when it is determined that the second memory device
stores information corresponding to the time informa-
tion while maintaining the connection between first pro-
cessor and the second memory device; and

controlling the connecting device to disconnect the con-
nection between the first processor and the second
memory device.

17. The control method according to claim 12, further

comprising

causing, by the control device, the third memory device to
perform an installation of a program for searching data
stored in the third memory device before starting search-
ing of the data stored in the third memory device by the
second processor.

18. The control method according to claim 12, wherein:

the first processor redundantly writes data into a plurality
of the first memory devices;

the control device controls the connecting device so that a
fourth memory device, which is one of the plurality of
first memory devices in which data is redundantly stored
and which is not connected to the first processor, will be
connected to a third processor, which is one of the plu-
rality of processors;

the third processor checks the fourth memory device and
informs the control device of a check result; and

when the check result indicates a failure in the fourth
memory device, the control device controls the connect-
ing device so that a fifth memory device, which is one of
the plurality of memory devices, will be connected to the
third processor, copies data which is redundantly stored
in a sixth memory device as in the fourth memory device
into the fifth memory device, and changes the allocation
of the failed fourth memory device to the first processor
to the allocation of the fifth memory device to the first
processor.



